
Artur Kotlicki Wadham College

A dissertation submitted in partial fulfilment of the requirements
for the degree of Master of Science in Applied Statistics.

Fast Kernel Adaptive Metropolis-Hastings
Algorithm

University of Oxford
Department of Statistics

September 14, 2015

ii

Fast Kernel Adaptive Metropolis-Hastings Algorithm

by

Artur Kotlicki

Submitted to the Department of Statistics
on September 14, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Applied Statistics

Abstract

We propose Fast Kernel Adaptive Metropolis-Hastings (F-KAMH), a gradient-free adaptive
MCMC algorithm that is highly suitable for contexts such as Pseudo-Marginal MCMC.
Our procedure bases on the Kernel Adaptive Metropolis-Hastings (KAMH) sampler of [42]
that offers a novel approach to sampling from multivariate target distributions with non-
linear dependencies between dimensions. KAMH bases on the mapping of the samples to a
reproducing kernel Hilbert space, where the choice of a proposal distribution is adaptively
dictated by the estimated sample covariance in the feature space. Flexibility of the algorithm
in [42] comes with an increased computational cost, however. In F-KAMH, we use a large-
scale approximation of the kernel methods framework based on random Fourier features
of [29], which leads to a significant reduction in the algorithm’s complexity. Moreover,
our asymptotically exact procedure adapts to the local covariance structure of the target
distribution based on the entire chain history, in contrast to KAMH’s suboptimal approach
which uses only a subsample of the chain history. Consequently, our newly proposed sampler
offers substantial improvements in terms of effective sample size per computation unit time.
Our claims are supported through experimental study on synthetic examples of highly non-
linear target distributions.

Dissertation Supervisor: Dr. Dino Sejdinovic
University of Oxford

iii

iv

Acknowledgments

First and foremost, I would like to thank my research supervisor Dr. Dino Sejdinovic.

This project would not have been possible without him, and I am very grateful for the

opportunity to work on this exciting topic. His dedicated involvement and enthusiasm, as

well as his insightful guidance have been invaluable, and for these I would like to express

my greatest appreciation.

I would also like to thank Mr. Heiko Strathmann1 for discussions and advice on the

project, as well as his insights on the theoretical aspect of the Fast Adaptive Metropolis

Hastings algorithm. His expertise and comments have greatly assisted the development of

the algorithm, and for his contributions I am very grateful.

Finally, I wish to express my gratitude to Mr. Stuart McRobert and Prof. Yee Whye

Teh for granting me access to BigBayes group computing resources.

1Gatsby Unit, CSML, University College London, United Kingdom.

v

vi

Contents

1 Intoduction 1

1.1 Software . 2

1.2 Document Structure . 3

2 Background 5

2.1 Positive Definite Functions and Kernels . 7

2.2 RKHS Embeddings and Covariance Operators 8

2.3 Random Fourier Features . 11

3 Sampling in RKHS and Kernel Adaptive Metropolis Algorithm 15

3.1 Propsal Distribution of the Kernel Adaptive Metropolis-Hastings Sampler . . 18

3.2 Vanishing Adaptation . 20

4 Fast Kernel Adaptive Metropolis-Hastings Algorithm 23

4.1 Running Estimators of Feature Space Covariances 28

5 Experiments 31

5.1 Sampling Efficiency . 33

5.2 Convergence of F-KAMH and Tail Behaviour 39

6 Summary 45

6.1 Further Work . 46

A Additional Figures 53

B Software (R code) 59

B.1 KAMH algorithm . 59

B.2 F-KAMH algorithm . 65

vii

B.3 Miscellaneous . 72

viii

Chapter 1

Intoduction

Markov chain Monte Carlo (MCMC) techniques are extremely widely used in integration and

optimisation problems in large dimensional spaces, and are one of the most commonly used

tools in Bayesian inference. They have been applied to many different disciplines including

machine learning, physics, statistics, econometrics and decision analysis [3, p. 349].

Since the expected estimation error directly depends on the correlation between simu-

lated consecutive points of the Markov chain [3, p. 344], much emphasis in MCMC research

and Metropolis-Hastings algorithms in particular has been put on tuning of the proposal

distribution to increase the efficiency of the algorithm, commonly measured in terms of the

effective sample size (ESS) [20]. The first Adaptive Metropolis-Hastings (AMH) sampler

was proposed by Haario et al. [17], where the authors update the covariance of the proposal

distribution based on chain history. Andrieu & Thoms [3] present more sophisticated AMH

samplers, such as adaptive scaling, component-wise scaling, and principal component up-

dates. Although these samplers bring efficiency gains for highly anisotropic targets, they

suffer from poor mixing in a strongly non-linear target setting [42, p. 1665].

Other families of specialised MCMC algorithms exist, which aim to increase sampling

efficiency by accessing available information about the target distribution, such as Metropolis

Adjusted Langevin Algorithms (MALA) [35]. Another notable example is the Hamiltonian

Monte Carlo (HMC) sampler [26], which exploits information about the gradient of the target

distribution in order to improve efficiency in highly dimensional and non-linear problems, as

well as its extension to Riemannian manifolds: Riemannian Manifold Hamiltonian Monte

Carlo (RM-HMC) [14].

Unfortunately, for a large class of problems such gradient information is unavailable

1

and even the target distribution may be analytically intractable or be too complex to be

evaluated [2, p. 697]. For example, in the context of Pseudo-Marginal MCMC (PM-MCMC)

[6], [2] the target posterior distribution can only be estimated at any given point [9].

The main motivation for work presented in this dissertation stems from intractable likeli-

hood problems, often found in a wide range of statistical modelling and prediction methods,

especially when dealing with latent variable models or when applying MCMC to inference

of the model’s hyper-parameters [9, p. 2214]. A typical such situation is the context of

Gaussian process classification [31, Chapter 3], where the likelihood of hyper-parameters

(i.e., parameters of the covariance function) is intractable due to a non-Gaussian link func-

tion (probit or logit) and therefore the “latent” Gaussian process cannot be integrated

analytically. Since joint samplers suffer from inefficiencies, pseudo-marginal sampling of

hyper-parameters is preferred [9, p. 2215]. However, in these cases efficient gradient-based

samplers like HMC are not available since the target itself is intractable.

Such situation with multivariate intractable targets has been addressed by the framework

of kernel-based sampling of the Kernel Adaptive Metropolis-Hastings (KAMH) algorithm

[42]. This sampler, introduced by Sejdinovic et al. [42], provides a novel approach to sampling

from multivariate target distributions with non-linear dependencies between dimensions. It

is based on the mapping of the samples to a reproducing kernel Hilbert space, where the

choice of a proposal distribution is adaptively dictated by the estimated sample covariance

in the feature space, and hence not relying on accessing the target gradient information.

Flexibility of the approach in [42] comes with an increased computational cost, however. In

this dissertation, we explore a faster version of kernel-based sampler in [42] using large-scale

approximation of kernel methods based on random Fourier features [29].

1.1 Software

The R programming language [28] implementation of the Kernel Adaptive Metropolis-

Hastings (KAMH), presented in Chapter 3, and Fast Kernel Adaptive Metropolis-Hastings

(F-KAMH), presented in Chapter 4, are planned to be released as a complete package in the

future. The files mcmc_kamh.R and mcmc_fkamh.R containing respective implementation of

the aforementioned algorithms can be sourced from the http://www.kotlicki.pl/R/KAMH/

directory. The code is also provided in Appendix B.

2

Sejdinovic et al. [42] provide Python programming language implementation of the

KAMH algorithm at https://github.com/karlnapf/kameleon-mcmc.

Our implementation is modular and very flexible, allowing the user to specify for ex-

ample custom kernel functions, adaptation schedule (KAMH), parameter update schedule,

method for generating multivariate Gaussian realisation (Cholesky, eigenvalue decomposi-

tion or singular value decomposition) and the form of the random features (F-KAMH). We

offer thinning procedure support for instances when limited memory is an issue. Refer to

the R implementation for more details.

1.2 Document Structure

This document is organised into six chapters. We begin our presentation with a brief

overview of the Metropolis-Hastings framework in Chapter 2, where we also discuss the-

oretical results related to kernels and reproducing kernel Hilbert spaces (RKHSs), as well

as overview the random Fourier features of [29]. In Chapter 3 we present a detailed review

of the Kernel Adaptive Metropolis-Hastings algorithm of [42], emphasising on its computa-

tional cost and limitations. In Chapter 4 we present the derivation of our newly proposed

Fast Kernel Adaptive Metropolis-Hastings sampler. We investigate the effectiveness of this

algorithm on synthetic highly non-linear target distributions in Chapter 5. Our experiments

show that F-KAMH achieves in practice a higher effective sample size per computation time

than the competing KAMH algorithm. We conclude our discussion in Chapter 6, where we

also state possible extensions to our work.

3

4

Chapter 2

Background

In this chapter we provide a short summary to the Metropolis-Hastings algorithm, first

proposed by Metropolis et al. [25], which belongs to a large class of Markov chain Monte

Carlo (MCMC) sampling algorithms. Moreover, we will provide an overview on the class

of Adaptive Metropolis-Hastings (AMH) algorithms, and discuss the necessary theory on

kernels (Section 2.1), reproducing kernel Hilbert spaces (Section 2.2), and random Fourier

features (Section 2.3), which will allow us to present a Kernel Adaptive Metropolis-Hastings

algorithm proposed by Sejdinovic et al. [42] in the next chapter and formulate its compu-

tationally efficient extension – the Fast Kernel Adaptive Metropolis-Hastings algorithm in

Chapter 4.

In our discussion in this chapter we will assume some fundamental knowledge on simu-

lation algorithms, which can be found in classical literature (for example, see [1], [3], [33],

[34]).

Denote by 𝜋(·) the (possibly unnormalised) density of interest with respect to the

Lebesgue measure on 𝒳 , where 𝒳 ⊂ R𝑑 is the associated supported domain. The underly-

ing idea behind a general class of Metropolis-Hastings algorithms is to generate a Markov

chain {𝑋𝑡}𝑡∈N using a Markov kernel Π such that Π admits the (normalised version of)

density 𝜋 as its stationary distribution. Since the limiting distribution of {𝑋𝑡}𝑡∈N is 𝜋,

the Ergodic theorem (see [27, Section 1.10]) guarantees an almost sure convergence of the

standard average 1
𝑇

∑︀𝑇
𝑡=1 ℎ(𝑋𝑡) → E𝜋[ℎ(𝑋)] as 𝑇 → ∞, for any integrable function ℎ [34, p.

170]. Furthermore, the rejection step2 related to the Metropolis-Hastings algorithm ensures

2Refer to equation (3.5) in Section 3.1 for the exact form of the acceptance probability 𝛼(𝑥𝑡,𝑥
*), where

𝑥𝑡 denotes the current state of the chain and 𝑥* ∼ 𝑞𝑍 is a proposed new point.

5

that the derived Markov kernel Π is theoretically valid for any density 𝜋 [34, p. 170].

In practice however, in order to achieve reasonable results from a simulation run on

a complicated and potentially high-dimensional target 𝜋 in a setting with a constrained

budget for the number of Markov chain iterations, an appropriate choice of effective proposal

distribution is vital [17, p. 223]. Haario et al. [17] originally proposed to use, at iteration 𝑡,

a proposal distribution of the form

𝑞𝑍(·|𝑥𝑡, 𝑍) = 𝒩 (𝑥𝑡, 𝑠𝑑𝜀𝐼𝑑 + 𝑠𝑑Σ𝑍), (2.1)

where 𝑥𝑡 is the current state of the chain, 𝑠𝑑 is a scaling parameter that depends only

on dimension 𝑑, 𝜀 > 0 is another scaling parameter, 𝐼𝑑 is a 𝑑 × 𝑑 identity matrix, and Σ𝑍

denotes an estimate of the covariance matrix of the target density based on the chain history

𝑍 , {𝑥𝑖}𝑡−1
𝑖=0. In a non-adaptive setting, Gelman et al. [12, p. 604] have shown that the

optimal in terms of efficiency measures value is achieved for 𝑠𝑑 = 2.38/
√
𝑑. Although this

result does not hold for AMH, it may be still used as a heuristic. Alternatively, 𝑠𝑑 may be

adapted at every iteration (see [3, Algorithm 4]) to reach the desirable acceptance rate3 of

𝛼* = 23.4% as given by [12, Theorem 3.1]. Moreover, Haario et al. [17, p. 225] suggest that

the parameter 𝜀 is to be kept relatively small4.

In general, the class of AMH algorithms (for example, see [17], [3], [42]) relies on the

same underlying principle for the proposal distribution 𝑞𝑍(· |𝑥0, . . . ,𝑥𝑡), where we aim to

learn the structure of the covariance matrix of the target distribution based on the available

information up to iteration 𝑡 from the chain history 𝑍 , {𝑥𝑖}𝑡−1
𝑖=0. However, in order to ensure

that the chain’s stationary distribution is not disturbed we require a vanishing adaptation

schedule, which we discuss in detail in Section 3.2. We note that one of the advantages of

the Fast Kernel Adaptive Metropolis-Hastings algorithm, developed in Chapter 4, is that

adaptation can be performed continuously without affecting the stationary distribution of

the chain.

Before we proceed with an overview of the recently introduced by Sejdinovic et al. Kernel

Adaptive Metropolis-Hastings (KAMH) algorithm [42] in Chapter 3, we give a brief summary

of the related theory in the next three sections.

3The optimal acceptance rate for the Metropolis algorithm for a symmetric proposal is 44% when 𝑑 = 1,
and decreases to approximately 23.4% with 𝑑 → ∞ [12, Theorem 3.1].

4Haario et al. [17, p. 226] argue that the main role of parameter 𝜀 > 0 is to ensure that the proposal
covariance does not degenerate and that chain’s ergodicity property holds.

6

2.1 Positive Definite Functions and Kernels

We begin this section by introducing the standard notions of a positive definite function, a

symmetric function, and a kernel, which are respectively given in Definitions 2.1, 2.2, and

2.3 below. There exists a direct correspondence between the aforementioned notions, as it

can be shown that a function 𝑘 is a kernel if and only if it is symmetric and positive definite

[43, Theorem 4.16].

In what follows, we let 𝒴 be an arbitrary non-empty set, without making any additional

assumptions on it. We note that since the presented theory holds for sets without a specific

structure, the large class of kernel learning algorithms can be generalised to many problems,

in which vectorial representation is not readily available, and one has to work with pairwise

distances or similarities between non-vectorial objects [40, p. 29].

Definition 2.1 (Positive definite function [47, p. 9]) If for all 𝑛 ∈ N, 𝛼1, . . . , 𝛼𝑛 ∈ R and

all 𝑦1, . . . ,𝑦𝑛 ∈ 𝒴, a function ℎ : 𝒴 × 𝒴 → R is such that

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖𝛼𝑗ℎ(𝑦𝑖,𝑦𝑗) ≥ 0,

then ℎ is said to be positive definite. Furthermore, if equality only holds when

𝛼1 = · · · = 𝛼𝑛 = 0 for mutually distinct 𝑦1, . . . ,𝑦𝑛 ∈ 𝒴, then ℎ is called strictly posi-

tive definite.

Definition 2.2 (Symmetric function [47, p. 9]) If for all 𝑥,𝑦 ∈ 𝒴, a function 𝑔 : 𝒴×𝒴 → R

is such that 𝑔(𝑥,𝑦) = 𝑔(𝑦,𝑥), then 𝑔 is said to be symmetric.

Definition 2.3 (Kernel function [18, p. 2]) A kernel function is a function 𝑘 : 𝒴 ×𝒴 → R,

(𝑥,𝑦) ↦→ 𝑘(𝑥,𝑦), satisfying, for all 𝑥,𝑦 ∈ 𝒴, 𝑘(𝑥,𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩, where 𝜙 maps into

some Hilbert space, known as feature space, ℋ.

By construction, kernel 𝑘 can be interpreted as a similarity measure between two objects

𝑥,𝑦 ∈ 𝒴 [18, p. 3]. Also, it is convenient to define a Gram matrix, 𝐾, whose (𝑖, 𝑗)-th

entry is defined as 𝐾𝑖𝑗 , 𝑘(𝑥𝑖, 𝑥𝑗), where without the loss of generality we assume

𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝒴 , [31, p. 80].

In this dissertation we consider a popular class of kernels, called translation invariant

(or shift-invariant) kernels, for which we require that the addition operation is well defined

7

on the set 𝒴 . A kernel 𝑘(𝑥,𝑦) is said to be translation invariant if there exists function

𝑘 : 𝒴 → R such that for all 𝑥,𝑦 ∈ 𝒴 , 𝑘(𝑥,𝑦) ≡ 𝑘(𝑥 − 𝑦). Here, we present two of the

most commonly used kernel functions – the Gaussian radial basis function kernel and the

Laplacian kernel, which are given in Definitions 2.4 and 2.5, respectively.

Definition 2.4 (Gaussian radial basis function kernel [41, p. 41]) For all 𝑥,𝑦 ∈ R𝑑 and a

bandwidth parameter 𝜎 > 0, the Gaussian radial basis function (RBF) kernel is defined as

𝑘RBF(𝑥,𝑦) = exp
(︁
− ||𝑥−𝑦||22

2𝜎2

)︁
, where || · ||2 denotes the Euclidean norm on R𝑑.

Differentiable translation invariant kernels and their corresponding derivatives are a crucial

element of the Kernel Adaptive Metropolis-Hastings algorithm, presented in Chapter 3.

Therefore, we note here that the gradient of the Gaussian RBF kernel is readily available in

analytical form as ∇𝑥 𝑘
RBF(𝑥,𝑦) = (𝑦−𝑥)

𝜎2 𝑘RBF(𝑥,𝑦).

Definition 2.5 (Laplacian kernel [47, p. 12]) For all 𝑥,𝑦 ∈ R𝑑 and a bandwidth parameter

𝜎 > 0, the Laplacian kernel is defined as 𝑘Lap(𝑥,𝑦) = exp(−𝜎||𝑥−𝑦||1), where || · ||1 denotes

the Taxicab (Manhattan) norm on R𝑑.

2.2 RKHS Embeddings and Covariance Operators

In this section we introduce reproducing kernel Hilbert spaces (RKHSs) and expand on

the notion of kernels in this setting. We will also discuss covariance operators and present

Bochner’s theorem, which is a crucial result used in the derivation of random Fourier features,

which are discussed in Section 2.3.

The theory of RKHSs was originally developed by Aronszajn [4], and relies on funda-

mental knowledge of functional analysis, which can be found in the classical literature (for

example, see [39], [32, Chapter 2]). We now proceed with a formal definition of RKHS,

stated below in Definition 2.6.

Definition 2.6 (Reproducing kernel Hilbert space [31, p. 130]) Let ℋ be a Hilbert space of

real functions 𝑓 defined on an index set 𝒴. Then ℋ is called a reproducing kernel Hilbert

space (RKHS) endowed with an inner product ⟨· , ·⟩ℋ, and norm ||𝑓 ||ℋ =
√︀

⟨𝑓, 𝑓⟩ℋ, if there

exists a function 𝑘 : 𝒴 × 𝒴 → R with the following properties:

i. for every 𝑥 ∈ 𝒴, 𝑘(𝑥,𝑦) as a function of 𝑦 ∈ 𝒴 belongs to ℋ, and

8

ii. 𝑘 has the reproducing property ⟨𝑘(𝑥, ·), 𝑘(𝑦, ·)⟩ℋ = 𝑘(𝑥,𝑦).

There exists a direct correspondence between a kernel function 𝑘 and an RKHS as stated

in Theorem 2.1. Consequently, we will use the standard notation of ℋ𝑘 to denote an RKHS

that is associated with the kernel function 𝑘.

Theorem 2.1 (Moore-Aronszajn [4, p. 344]) For every symmetric, positive definite func-

tion (kernel) 𝑘 : 𝒴 × 𝒴 → R, there is an associated reproducing kernel Hilbert space ℋ𝑘 of

real valued functions on 𝒴 with reproducing kernel 𝑘.

In our context kernel functions can be interpreted as follows. Let us consider the Hilbert

space 𝐿2 with the dot product ⟨𝑓, 𝑔⟩𝐿2 =
∫︀
𝑓(𝑥)𝑔(𝑥) d𝑥, to which many non-smooth func-

tions belong and where 𝐿2 is not a RKHS itself. In this setting, kernels can be interpreted as

the analogues of delta functions within the smoother RKHS [31, p. 130]. In that space the

delta function 𝛿𝑥(·) is a representer of evaluation, since 𝑓(𝑥) =
∫︀
𝑓(𝑦)𝛿𝑥(𝑦) d𝑦. In analogy,

kernel 𝑘 is a representer of evaluation in the RKHS ℋ𝑘, with the main difference being that

𝑘(𝑥, ·) ∈ ℋ𝑘, whereas 𝛿𝑥(·) ̸∈ 𝐿2.

Consequently, we now define a canonical feature map, as stated in Definition 2.7.

Definition 2.7 (Canonical feature map [42, p. 1667]) The map defined as 𝜙 : 𝒴 → ℋ𝑘,

𝜙 : 𝑦 ↦→ 𝑘(·,𝑦) is said to be the canonical feature map of 𝑘.

It is possible to further extend the notion of the canonical feature map or embedding

from a single point to that of a probability measure 𝑃 on 𝒴 [42, p. 1667]. In particular, its

kernel embedding is then an element 𝜇𝑃 ∈ ℋ𝑘, where 𝜇𝑃 =
∫︀
𝑘(·,𝑦) d𝑃 (𝑦) and 𝑦 ∈ 𝒴 .

Furthermore, the Riesz representation theorem (Theorem 2.2) guarantees that all bounded

linear functionals may be written in the form of a canonical feature map [19, p. 191]. Con-

sequently, for any measurable and bounded kernel 𝑘, there exists a mean embedding 𝜇𝑃 for

all probability measures on 𝒴 [42, p. 1667].

Theorem 2.2 (Riesz representation [19, p. 191]) If 𝜙 is a bounded linear functional on a

Hilbert space ℋ, there is a unique vector 𝑦 ∈ ℋ such that 𝜙(𝑥) = ⟨𝑦,𝑥⟩ℋ, for all 𝑥 ∈ ℋ.

A characteristic kernel, defined in Definition 2.8, allows for a unique characterisation of its

embedding, analogous to probability distributions being characterised by the corresponding

unique characteristic function [42, p. 1667].

9

Definition 2.8 (Characteristic kernel [47, p. 18]) Let 𝑘 : 𝒴 × 𝒴 → R be a bounded kernel

and let 𝑃 denote a probability measure on 𝒴. If the kernel embedding 𝑃 ↦→ 𝜇𝑃 is injective,

then 𝑘 is said to be characteristic.

There are many commonly used in practice, interesting bounded kernels 𝑘, such as the

Gaussian RBF, Laplacian and inverse multi-quadrics, which are characteristic kernels [42,

p. 1667]. Some further examples are given later in Table 2.1.

It follows that the kernel embedding 𝜇𝑃 is the representer of expectations of smooth

functions with respect to 𝑃 ; so in other words, for all functions 𝑓 ∈ ℋ𝑘, we have ⟨𝑓, 𝜇𝑃 ⟩ℋ𝑘
=∫︀

𝑓(𝑦) d𝑃 (𝑦). Consequently, for any samples 𝑍 , {𝑧𝑖}𝑛𝑖=1 that are distributed according to

the probability measure 𝑃 , the embedding of the empirical measure is simply given by the

empirical average, 𝜇𝑍 = 1
𝑛

∑︀𝑛
𝑖=1 𝑘(·, 𝑧𝑖) [42, p. 1667].

Similarly to the kernel embedding, we now formalise the notion of the covariance oper-

ator 𝐶𝑃 in Definition 2.9.

Definition 2.9 (Covariance operator [10, p. 79], [42, p. 1667]) Assuming the previously

established notation, the covariance operator 𝐶𝑃 : ℋ𝑘 → ℋ𝑘 for a probability measure 𝑃 is

given by 𝐶𝑃 =
∫︀
𝑘(·,𝑥)⊗ 𝑘(·,𝑥) d𝑃 (𝑥)− 𝜇𝑃 ⊗ 𝜇𝑃 , where for 𝑎, 𝑏, 𝑐 ∈ ℋ𝑘 the tensor product

is defined as (𝑎⊗ 𝑏) = ⟨𝑏, 𝑐⟩ℋ𝑘
𝑎.

By construction, the covariance operator has the desired property that for all 𝑓, 𝑔 ∈ ℋ𝑘,

⟨𝑓, 𝐶𝑃𝑔⟩ℋ𝑘
= E𝑃 (𝑓𝑔) − E𝑃 (𝑓)E𝑃 (𝑔); for a formal proof of this statement refer to Fukumizu

et al. [10, A.1, Theorem 1].

Finally, we conclude this section with a discussion on Bochner’s theorem (Theorem 2.3).

Theorem 2.3 (Bochner [51, p. 70]) A bounded continuous function 𝑘 : R𝑑 → R is positive

definite if and only if it is the Fourier transform of a non-negative finite Borel measure, Ω.

For a proof of Bochner’s theorem refer to Gihman & Skorohod [13, p. 208]. The theorem

guarantees that the Fourier transform of any continuous positive definite function, 𝑘(𝑥− 𝑦),

yields a non-negative measure [31, p. 82]. Furthermore, this measure is properly normalised

provided that 𝑘(0) = 1 holds [45, p. 1]. If the aforementioned measure has a corresponding

density Ω(𝜔), then Ω is called the spectral density or power spectrum corresponding to 𝑘

[31, p. 82]. Moreover, if the spectral density Ω(𝜔) exists, then the shift-invariant kernel

10

and the spectral density are Fourier duals of each other, a result known as the Wiener-

Khintchine theorem [31, p. 82]. It is important to note that when we are dealing with

the shift-invariant kernels, with examples being Gaussian RBF and Laplacian kernels (see

Section 2.1), Bochner’s theorem allows for expansion of the kernel function using harmonic

basis [24, p. 4], given as

𝑘(𝑥,𝑦) , 𝑘(𝑥− 𝑦) =

∫︁
R𝑑

exp {𝑖𝜔ᵀ(𝑥− 𝑦)} dΩ(𝜔), (2.2)

where Ω(𝜔) is the Fourier transform of the kernel; for example, in the case of the Gaus-

sian RBF kernel with bandwidth 𝜎, the corresponding density is the Gaussian distribution

𝒩 (0, 1
𝜎
𝐼). Table 2.1 provides a summary of the common translation invariant kernels on R𝑑

and the functional form of their corresponding Fourier transforms Ω(𝜔); note that in the

table we define Γ to be the usual Gamma function and 𝐾𝜆 to be a modified Bessel function

of the third kind of order 𝜆 ∈ R [51, Theorem 6.13].

Kernel name Kernel function, 𝑘(𝑥,𝑦) Fourier transform, Ω(𝜔)

Gaussian [24, p. 4] exp
(︁
− ||𝑥−𝑦||22

2𝜎2

)︁
, 𝜎 > 0 (2𝜋)−𝑑/2𝜎𝑑 exp

(︁
−𝜎2||𝜔||22

2

)︁
Laplacian [47, p. 12] exp(−𝜎||𝑥− 𝑦||1), 𝜎 > 0

(︀
2
𝜋

)︀𝑑/2∏︀𝑑
𝑖=1

𝜎
𝜎2+𝜔2

𝑖

Inverse multi- (𝑐2 + ||𝑥− 𝑦||22)−𝛽,
21−𝛽

Γ(𝛽)

(︁
||𝜔||2

𝑐

)︁𝛽− 𝑑
2
𝐾 𝑑

2
−𝛽(𝑐||𝜔||2)quadric [47, p. 12] 𝑐 > 0, 𝛽 > 𝑑

2

Matérn [31, p. 84] 21−𝜆

Γ𝜆

(︁√
2𝜆||𝑥−𝑦||2

𝜎

)︁𝜆

𝐾𝜆

(︁√
2𝜆||𝑥−𝑦||2

𝜎

)︁
, 2𝑑+𝜆𝜋𝑑/2Γ(𝜆+𝑑/2)𝜆𝜆

Γ(𝜆)𝜎2𝜆 ×

𝜆 > 0, 𝜎 > 0 ×
(︀
2𝜆
𝜎2 + 4𝜋2||𝜔||22

)︀−(𝜆+𝑑/2)

Sinc [47, p. 13]
∏︀𝑑

𝑖=1
sin(𝜎(𝑥𝑖−𝑦𝑖))

𝑥𝑖−𝑦𝑖
, 𝜎 > 0

(︀
𝜋
2

)︀𝑑/2∏︀𝑑
𝑖=1 1[−𝜎,𝜎](𝜔𝑖)

Sinc-squared [47, p. 13]
∏︀𝑑

𝑖=1

sin2(
𝑥𝑖−𝑦𝑖

2
)

(𝑥𝑖−𝑦𝑖)2
, 𝜎 > 0 (2𝜋)𝑑/2

4𝑑

∏︀𝑑
𝑖=1(1 − |𝑤𝑖|1[−1,1](𝜔𝑖)

Table 2.1: Common translation invariant kernels on R𝑑 and the corresponding Fourier trans-
forms, where 𝑥 = (𝑥1, . . . , 𝑥𝑑)

ᵀ ∈ R𝑑, 𝑦 = (𝑦1, . . . , 𝑦𝑑)
ᵀ ∈ R𝑑, and 𝜔 = (𝜔1, . . . , 𝜔𝑑)

ᵀ ∈ R𝑑.

Bochner’s theorem is a classical result from harmonic analysis, which has been vi-

tal to the development of the concept of random Fourier features presented originally by

Rahimi & Recht [29], and discussed in Section 2.3.

2.3 Random Fourier Features

With the rapid increase in available computing power and amount of data collected, the

popularity of the positive definite kernel approach in estimation and learning methods,

11

particularly in machine learning tasks, has grown significantly [18, p. 1]. Attractiveness

of these methods comes from the fact that given enough training data it is possible to

approximate any function or decision boundary arbitrarily well [43, p. 111]. The kernel

trick is widely applicable to learning algorithms that only depend on the inner product

between pairs of input points in 𝒳 ⊂ R𝑑, and allows one to generate features implicitly,

without explicit computation of the coordinates of the non-linear transformation vector

𝑥 ↦→ 𝜙(𝑥) [29, p. 1]. Therefore, data items 𝑥, 𝑦 ∈ 𝒳 may be replaced with a kernel

function 𝑘(𝑥,𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩ for a chosen (nonlinear) mapping 𝜙 : R𝑑 ↦→ ℋ𝑘, where the

dimensionality of the RKHS ℋ𝑘 can be high, or even infinite as in the case of Gaussian or

Laplacian kernels.

Despite the advantage of a non-parametric approach and high flexibility achieved due

to implicit calculations in the RKHS ℋ𝑘, the scalability with size of the data for kernel

methods is poor and has been found to be a major barrier preventing them from being used

in large-scale learning problems [29, p. 2]. Since the data is being accessed by the algorithm

through evaluations of 𝑘(𝑥,𝑦), or through the kernel matrix (containing evaluations of the

kernel 𝑘 over all pairs of data points), there exists an inherited large computational and

storage cost for big training sets [29, p. 1]. The computational advantage of the kernel trick

becomes less appealing in practice when the number of training samples 𝑛 is exceedingly

large, as the complexity cost is of (at least) quadratic order in 𝑛 [24, p. 4].

In order to overcome the problem of poor scalability of kernel methods, Rahimi & Recht

[29] originally proposed the use of a randomised feature map 𝜑 : R𝑑 ↦→ R𝐷, which explicitly

maps the data to a low-dimensional Euclidean inner product space, so that the kernel

evaluation between a pair of transformed points can be approximated by the inner product

between that pair; that is

𝑘(𝑥,𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩ ≈ 𝜑ᵀ
𝑥𝜑𝑦. (2.3)

The advantage of this now parametric (but randomised) approach, in contrast to the use

of kernel’s lifting 𝜙, is that the randomised feature map 𝜑 is low-dimensional [29, p. 1].

However, the feature space is no longer infinitely dimensional (or is of a lower dimension

than if ℋ𝑘 was of a finite dimension), and thus we have less expressive power.

In the original paper, Rahimi & Recht [29] presented two possible embeddings based on

12

the Fourier transform Ω(𝜔) of the kernel 𝑘. The first embedding, for 𝐷 even, is of the form

𝜑𝑥 ,

√︂
2

𝐷

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(𝜔ᵀ
1𝑥)

cos(𝜔ᵀ
1𝑥)

...

sin(𝜔ᵀ
𝐷/2𝑥)

cos(𝜔ᵀ
𝐷/2𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∀𝑖 = 1, . . . , 𝐷

2
: 𝜔𝑖

𝑖𝑖𝑑∼ Ω(𝜔). (2.4)

The second embedding yields twice as many samples of 𝜔 while adding additional non-shift-

invariant noise [45, p. 1], and is of the form

𝜑𝑥 ,

√︂
2

𝐷

⎡⎢⎢⎢⎣
cos(𝜔ᵀ

1𝑥 + 𝑏1)
...

cos(𝜔ᵀ
𝐷𝑥 + 𝑏𝐷)

⎤⎥⎥⎥⎦ , ∀𝑖 = 1, . . . , 𝐷 : 𝜔𝑖
𝑖𝑖𝑑∼ Ω(𝜔), and 𝑏𝑖

𝑖𝑖𝑑∼ Unif[0,2𝜋]. (2.5)

For a complete exposition of the theory we present the derivation of the second embedding

𝜑𝑥, stated in equation (2.5). In the following derivation we use the fact that a kernel 𝑘 can

be expressed in terms of a Fourier transform, as given in equation (2.2):

𝑘(𝑥,𝑦) = 𝑘(𝑥− 𝑦) =

∫︁
R𝑑

exp {𝑖𝜔ᵀ(𝑥− 𝑦)} dΩ(𝜔)

= ℜ
{︂∫︁

R𝑑

cos(𝜔ᵀ(𝑥− 𝑦)) + 𝑖 sin(𝜔ᵀ(𝑥− 𝑦)) dΩ(𝜔)

}︂
=

∫︁ 2𝜋

0

1

2𝜋
d𝑏×

∫︁
R𝑑

cos(𝜔ᵀ𝑥− 𝜔ᵀ𝑦) dΩ(𝜔)

=

∫︁
R𝑑

∫︁ 2𝜋

0

1

2𝜋
cos (𝜔ᵀ𝑥 + 𝑏− (𝜔ᵀ𝑦 + 𝑏)) d𝑏 dΩ(𝜔)

=

∫︁
R𝑑

∫︁ 2𝜋

0

1

2𝜋
2 cos(𝜔ᵀ𝑥 + 𝑏) cos(𝜔ᵀ𝑦 + 𝑏) d𝑏 dΩ(𝜔)

−
∫︁

R𝑑

∫︁ 2𝜋

0

1

2𝜋
cos(𝜔ᵀ(𝑥 + 𝑦) + 2𝑏) d𝑏 dΩ(𝜔)

=

∫︁
R𝑑

∫︁ 2𝜋

0

1

2𝜋
2 cos(𝜔ᵀ𝑥 + 𝑏) cos(𝜔ᵀ𝑦 + 𝑏) d𝑏 dΩ(𝜔) − 0

= E
(︁√

2 cos(𝜔ᵀ𝑥 + 𝑏)
√

2 cos(𝜔ᵀ𝑦 + 𝑏)
)︁
,

where the expectation is taken over the joint space of 𝑏 ∼ Unif[0,2𝜋] and 𝜔 ∼ Ω. We note that

the derivation of the first embedding 𝜑𝑥, stated in equation (2.4), follows in a similar manner

using an alternative trigonometric identity and hence will be omitted in this dissertation for

13

clarity and conciseness.

Sutherland & Schneider [45] have shown that the first embedding 𝜑𝑥, despite its less

frequent use in practice as compared to 𝜑𝑥, is superior for the Gaussian RBF kernel frame-

work. This is due to the fact that 𝜑𝑥 has lower variance than 𝜑𝑥 if, for all 𝑥,𝑦 ∈ 𝒳 , [45, p. 2]

Var [cos(𝜔ᵀ(𝑥− 𝑦))] =
1

2
+

1

2
𝑘(2(𝑥− 𝑦)) − 𝑘(𝑥− 𝑦)2 ≤ 1

2
.

The above inequality may be used as an aid in determining which kernel embedding should

be used in practice, depending on the choice of kernel 𝑘. In the case of a Gaussian RBF

kernel, 𝑘RBF(𝑥− 𝑦) = exp
(︁
− ||𝑥−𝑦||22

2𝜎2

)︁
, we have that [45, p. 2]

Var [cos(𝜔ᵀ(𝑥− 𝑦))] =
1

2

(︂
1 − exp

(︂
−||𝑥− 𝑦||22

2𝜎2

)︂)︂2

≤ 1

2
,

and thus the first embedding 𝜑𝑥 will always have a lower variance than 𝜑𝑥, with the difference

in variances increasing as 𝑘RBF(𝑥 − 𝑦) increases. Moreover, as the first embedding 𝜑𝑥 is

shift-invariant (in contrast to 𝜑𝑥), stronger theoretical bounds for resultant approximation

can be established (refer to Sutherland & Schneider [45] for details).

Finally, we note that the application of random Fourier features (RFF) allows for the

construction of feature spaces that approximate any shift-invariant kernel 𝑘(𝑥 − 𝑦) whose

spectral measure satisfies an appropriate moment condition (refer to [29, Claim 1] for details)

to within 𝜀 with only 𝐷 = 𝑂
(︀
𝑑𝜖−2 log 1

𝜀2

)︀
dimensions [29, p. 1]. That said, in many practical

applications this theoretical bound may be lifted, and even much smaller values for the

dimension 𝐷 are found empirically sufficient [29, p. 1].

14

Chapter 3

Sampling in RKHS and Kernel Adaptive

Metropolis Algorithm

In order to capture highly non-linear dependencies in the target distribution 𝜋(·), where the

location of the current point of the chain strongly affects the directions of large variance,

Sejdinovic et al. [42] proposed a novel approach in which samples are mapped to a reproduc-

ing kernel Hilbert space, where the corresponding empirical covariance in that feature space

is used to construct the proposal. This approach allows one to obtain a proposal distribution

that is locally adaptive, as opposed to simply converging to a global covariance structure of

the distribution of interest as often found in other adaptive algorithms [42]. In this chapter,

we overview the construction of the Kernel Adaptive Metropolis-Hastings (KAMH) algo-

rithm of [42] and discuss some of the necessary theoretical results. The presentation in this

chapter closely follows that of [42].

For a chosen kernel function 𝑘, let 𝑥𝑡 ∈ 𝒳 be the current chain state, and denote by

{𝑥𝑖}𝑡𝑖=0 the entire current chain history, that is to be mapped to the associated RHKS ℋ𝑘.

Moreover, define 𝑍 , {𝑧𝑖}𝑛𝑖=1 be a subset of that chain history such that 𝑛 ≤ 𝑡−1. We note

that we work only on the subset of the chain history 𝑍, instead of the entire history, due

to the incurred high computational complexity cost (linear in 𝑛) of the KAMH algorithm.

Consequently, the proposed procedure is suboptimal in the sense that we do not use all the

available information about the chain past in order to construct proposal distributions. In

our further investigation in Chapter 4, we employ the random Fourier features approximation

framework to remove the aforementioned cost dependency on 𝑛, and hence allowing for the

use of the entire chain history at a constant computational cost at every iteration.

15

The KAMH algorithm works with a Gaussian measure on the feature space ℋ𝑘, centred

at the canonical feature of the current chain state 𝑘(·,𝑥𝑡), and with the corresponding

empirical covariance operator 𝐶𝑍 = 1
𝑛

∑︀𝑛
𝑖=1 𝑘(·, 𝑧𝑖)⊗𝑘(·, 𝑧𝑖)−𝜇𝑍⊗𝜇𝑍 , which can be directly

derived from Definition 2.9. The empirical covariance operator 𝐶𝑍 is of finite-rank, and

therefore the above measure is supported only on a finite dimensional affine space 𝑥𝑡 +ℋ𝑍 ,

where ℋ𝑍 = span{𝑘(·, 𝑧𝑖)}𝑛𝑖=1 is the subspace spanned by the canonical features of 𝑍.

Proposition 3.1 below gives a convenient form of the corresponding RKHS-valued random

variable as an appropriate linear combination of the canonical features. This allows sampling

from this Gaussian measure in the RKHS, where the empirical covariance operator has been

scaled by a parameter 𝜈2 whose role is that of parameter 𝑠𝑑 in equation (2.1).

Proposition 3.1 (Sample from the Gaussian measure on the RKHS ℋ𝑘 [42, p. 1668])

A sample from the Gaussian measure on the RKHS ℋ𝑘 with mean 𝑘(·,𝑥𝑡) and covariance

𝜈2𝐶𝑍, for parameter 𝜈 > 0, is of the form 𝑓 = 𝑘(·,𝑥𝑡) +
∑︀𝑛

𝑖=1
𝜈√
𝑛
𝛽𝑖 [𝑘(·, 𝑧𝑖) − 𝜇𝑍], where

𝛽 ∼ 𝒩 (0, 𝐼𝑛) is isotropic.

Proof (of Proposition 3.1 [42, p. 1668]) Since E(𝛽) = 0 by construction, we clearly have

that E(𝑓) = 𝑘(·,𝑥𝑡) as required. It hence suffices to prove that 𝑓 has the correct covariance

structure. We observe that

E [(𝑓 − 𝑘(·,𝑥𝑡)) ⊗ (𝑓 − 𝑘(·,𝑥𝑡))] = E

[︃
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜈2

𝑛
𝛽𝑖𝛽𝑗(𝑘(·, 𝑧𝑖) − 𝜇𝑍) ⊗ (𝑘(·, 𝑧𝑗) − 𝜇𝑍)

]︃

= E

[︃
𝑛∑︁

𝑖=1

𝜈2

𝑛
𝛽2
𝑖 (𝑘(·, 𝑧𝑖) − 𝜇𝑍) ⊗ (𝑘(·, 𝑧𝑖) − 𝜇𝑍)

]︃

+ E

⎡⎢⎢⎣ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,

𝑗 ̸=𝑖

𝜈2

𝑛
𝛽𝑖𝛽𝑗(𝑘(·, 𝑧𝑖) − 𝜇𝑍) ⊗ (𝑘(·, 𝑧𝑗) − 𝜇𝑍)

⎤⎥⎥⎦
=

𝜈2

𝑛

𝑛∑︁
𝑖=1

(𝑘(·, 𝑧𝑖) − 𝜇𝑍) ⊗ (𝑘(·, 𝑧𝑖) − 𝜇𝑍) = 𝜈2𝐶𝑍 ,

where we used the fact that for all 𝑖 ̸= 𝑗, Cov(𝛽𝑖, 𝛽𝑗) = 0.

Since in general, there is no corresponding pre-image in the input domain 𝒳 for the

sample 𝑓 = 𝑘(·,𝑥𝑡) +
∑︀𝑛

𝑖=1
𝜈√
𝑛
𝛽𝑖 [𝑘(·, 𝑧𝑖) − 𝜇𝑍] (given by Proposition 3.1), we want to find

point 𝑥* ∈ 𝒳 such that the canonical feature map 𝑘(·,𝑥*) lies close to 𝑓 in the RKHS norm.

16

This gives rise to an optimisation problem [5, p. 288], which can be expressed directly using

the kernel trick, as described in Section 2.3, by

arg min
𝑥∈𝒳

||𝑘(·,𝑥)−𝑓 ||2ℋ𝑘
= arg min

𝑥∈𝒳

{︂
𝑘(𝑥,𝑥) − 2

(︂
𝑘(𝑥,𝑥𝑡) +

∑︁𝑛

𝑖=1

𝜈√
𝑛
𝛽𝑖 [𝑘(𝑥, 𝑧𝑖) − 𝜇𝑍(𝑥)]

)︂}︂
.

The above objective function, which we denote by ℒ : 𝒳 → R, leads often to a non-convex

minimisation problem that is difficult to solve [5, p. 288]. Sejdinovic et al. [42] make a single

descent step along the gradient of the cost function ℒ(𝑥;𝑍,𝑥𝑡), where

ℒ(𝑥;𝑍,𝑥𝑡) = 𝑘(𝑥,𝑥) − 2𝑘(𝑥,𝑥𝑡) − 2
𝑛∑︁

𝑖=1

𝜈√
𝑛
𝛽𝑖 [𝑘(𝑥, 𝑧𝑖) − 𝜇𝑍(𝑥)] ,

consequently yielding the proposed new point 𝑥* to be of the form

𝑥* = 𝑥𝑡 − 𝜌∇𝑥 ℒ(𝑥;𝑍,𝑥𝑡)
⃒⃒
𝑥=𝑥𝑡

+ 𝜉,

where 𝜌 is a gradient step size, and 𝜉 ∼ 𝒩 (0, 𝛾2𝐼𝑑) is an additional isotropic exploration

term. Parameter 𝛾 controls the impact of the exploration term 𝜉 on the final form of the

adapted covariance matrix, and similarly as for the parameter 𝜀 in equation (2.1), smaller

values of 𝛾 typically suffice. This claim is supported by the empirical investigation conducted

in Chapter 5.

Aiming to further simplify the descent step at the current point 𝑥𝑡 in the chain, Sejdinovic

et al. [42] rewrite it in an equivalent form where

𝜌∇𝑥 ℒ(𝑥;𝑍,𝑥𝑡)
⃒⃒
𝑥=𝑥𝑡

= 𝜌 (𝑎𝑥𝑡 −𝑀𝑍,𝑥𝑡𝐻𝛽) , (3.1)

where 𝑎𝑥𝑡 is a 𝑑-dimensional column vector such that

𝑎𝑥𝑡 = ∇𝑥𝑘(𝑥,𝑥)
⃒⃒
𝑥=𝑥𝑡

− 2∇𝑥𝑘(𝑥,𝑥𝑡)
⃒⃒
𝑥=𝑥𝑡

, (3.2)

𝑀𝑍,𝑥𝑡 is a 𝑑× 𝑛 matrix such that

𝑀𝑍,𝑥𝑡 = 2
[︁
∇𝑥 𝑘(𝑥, 𝑧1)

⃒⃒
𝑥=𝑥𝑡

, . . . ,∇𝑥 𝑘(𝑥, 𝑧𝑛)
⃒⃒
𝑥=𝑥𝑡

]︁
, (3.3)

and 𝐻 is the usual 𝑛 × 𝑛 centring matrix, such that 𝐻 = 𝐼𝑛 − 1
𝑛
1𝑛1

ᵀ
𝑛, where 1𝑛 denotes

17

an 𝑛-dimensional column vector with every element equal to 1.

It can be shown that for any differentiable positive definite kernel 𝑘, the 𝑎𝑥𝑡 term de-

fined in equation (3.2) vanishes, meaning that 𝑎𝑥𝑡 = 0 [42, Appendix A, Proposition 1].

Consequently, equation (3.1) simplifies. In that case we set without the loss of generality

𝜌 = 1, and merge 𝜌 and the scale 𝜈 found in front of the 𝛽-coefficients into a single scale

parameter [42, p. 1669].

3.1 Propsal Distribution of the Kernel Adaptive Metropolis-

Hastings Sampler

The Kernel Adaptive Metropolis-Hastings algorithm (KAMH), developed by Sejdinovic

et al. [42], exploits the fact that both densities 𝑝(𝛽) and 𝑝𝑍(𝑥*|𝑥𝑡, 𝛽) are (multivariate)

Gaussian in order to establish an analytical form for the density of the proposal distribution

𝑞𝑍(𝑥*|𝑥𝑡), obtained by integrating out the 𝛽 vector, i.e.

𝑞𝑍(𝑥*|𝑥𝑡) =

∫︁
R𝑛

𝑝𝑍(𝑥*|𝑥𝑡, 𝛽)𝑝(𝛽) d𝛽.

The closed form expression for 𝑞𝑍(𝑥*|𝑥𝑡) is given in Proposition 3.2, stated below.

Proposition 3.2 (Explicit form for the proposal distribution of the KAMH algorithm [42])

The proposal distribution is Gaussian of the form 𝑞𝑍(·|𝑥𝑡) = 𝒩 (𝑥𝑡, 𝑅𝑍), where the covari-

ance matrix is given by

𝑅𝑍 = 𝛾2𝐼𝑑 + 𝜈2𝑀𝑍,𝑥𝑡𝐻𝑀ᵀ
𝑍,𝑥𝑡

, (3.4)

where 𝑀𝑍,𝑥𝑡 is given in equation (3.3), and 𝐻 is the 𝑛× 𝑛 centring matrix.

For the proof of Proposition 3.2 refer to Sejdinovic et al. [42, Appendix A, Proposition 2].

The covariance matrix 𝑅𝑍 of the proposal distribution may be alternatively written as

𝑅𝑍 = 𝛾2𝐼𝑑 + 𝜈2𝑀𝑍,𝑥𝑡

(︀
𝑀𝑍,𝑥𝑡 − 1

𝑛
(𝑀𝑍,𝑥𝑡1𝑛)1ᵀ

𝑛

)︀ᵀ
,

which can now be evaluated with a linear cost in 𝑛, in contrast to 𝒪(𝑛2) complexity of

directly computing 𝑅𝑍 using equation (3.4).

Since the proposal distribution 𝑞𝑍(𝑥*|𝑥𝑡) has a covariance matrix that depends on the

current state of the chain 𝑥𝑡, it is not symmetric. Therefore, the acceptance probability

18

follows the Metropolis-Hastings scheme, and is given as

𝛼(𝑥𝑡,𝑥
*) = min

{︂
1,

𝜋(𝑥*)𝑞𝑍(𝑥𝑡|𝑥*)

𝜋(𝑥𝑡)𝑞𝑍(𝑥*|𝑥𝑡)

}︂
(3.5)

for 𝜋(𝑥𝑡)𝑞𝑍(𝑥*|𝑥𝑡) > 0, and 𝛼(𝑥𝑡,𝑥
*) = 1 otherwise. This is in contrast to the Metropolis

acceptance probability used in Haario et al. [17], where the proposal distribution is asymp-

totically symmetric, allowing for its simplified form due to the obvious cancellations.

We conclude our discussion on the form of the KAMH proposal distribution by consid-

ering a local interpretation of its covariance structure, which depends on the choice of the

kernel 𝑘 through the matrix 𝑀𝑍,𝑥𝑡 , stated in equation (3.3). For a Gaussian RBF kernel

(see Section 2.1) and a 𝑑-dimensional target 𝜋, we have

𝑀𝑍,𝑥𝑡 =
2

𝜎2

[︀
𝑘RBF(𝑥𝑡, 𝑧1)(𝑧1 − 𝑥𝑡), . . . , 𝑘

RBF(𝑥𝑡, 𝑧𝑛)(𝑧𝑛 − 𝑥𝑡)
]︀
,

where 𝑧𝑖 , (𝑧𝑖,1, . . . , 𝑧𝑖,𝑑)
ᵀ ∈ R𝑑 for 𝑖 = 1, . . . , 𝑛, and 𝑥𝑡 , (𝑥𝑡,1, . . . , 𝑥𝑡,𝑑)

ᵀ ∈ R𝑑. Conse-

quently, the (𝑖, 𝑗)-th element of the covariance 𝑅𝑍 ∈ R𝑑×𝑑 that approximates the structure

of the target distribution’s covariance, at iteration 𝑡, is given by [42, p. 1670]

[𝑅𝑍]𝑖𝑗 = 𝛾2𝛿𝑖𝑗 +
4𝜈2(𝑛− 1)

𝜎4𝑛

𝑛∑︁
𝑘=1

[𝑘RBF(𝑥𝑡, 𝑧𝑘)]2(𝑧𝑘,𝑖 − 𝑥𝑡,𝑖)(𝑧𝑘,𝑗 − 𝑥𝑡,𝑗)

− 4𝜈2

𝜎4𝑛

∑︁
𝑘 ̸=𝑙

𝑘RBF(𝑥𝑡, 𝑧𝑘)𝑘RBF(𝑥𝑡, 𝑧𝑙)(𝑧𝑘,𝑖 − 𝑥𝑡,𝑖)(𝑧𝑙,𝑗 − 𝑥𝑡,𝑗).

(3.6)

For large values of 𝑛, the first two terms in equation (3.6) dominate; and since points 𝑧𝑖, for

𝑖 = 1, . . . , 𝑛, that are closer to the current chain state 𝑥𝑡 yield larger evaluation of the kernel

𝑘RBF(𝑥𝑡, 𝑧𝑖), the covariance structure is locally adapted with higher weights put on the local

points. Moreover, this implies that in areas of low probability for the target distribution 𝜋

(where there are no local points in the subset of chain history), KAMH converges to a random

walk Metropolis-Hastings, with 𝑅𝑍 ≈ 𝛾2𝐼𝑑. Refer to [42, Section 4.3] for an interpretation

of the proposal’s covariance matrix for linear and Matérn kernels.

19

3.2 Vanishing Adaptation

In order to guarantee that KAMH sampler targets the correct stationary distribution 𝜋, at

each iteration 𝑡 we update the random subsample 𝑍 , {𝑧𝑖}𝑛𝑖=1 with probability

0 ≤ 𝑝𝑡 ≤ 1, such that 𝑝1 = 1, lim𝑡→∞ 𝑝𝑡 → 0 and satisfying the vanishing adaptation5

[3, Section 3, 4]. Introduction of these adaptation probabilities {𝑝𝑡}∞𝑡=1 ensures that 𝜋 is not

lost as the invariant distribution of the algorithm’s output chain (see [37, Theorem 1]), as

otherwise the past information is used infinitely often, which violates the Markov property

of the transition kernel [1, p. 32]. See [3, Section 2], [11] for examples of how adaptation

can interfere with the 𝜋-ergodicity of MCMC sampler and thus implying the need for van-

ishing adaptation. In this dissertation, as suggested by Gelfand & Sahu [11], 𝑝𝑡 is chosen

so that adaptation is carried out only during an initial period of time and then adaptation

probability is set to 0. Refer to [3], [11] for details on suggested alternative approaches to

setting the adaptation probabilities.

Furthermore, we note that it is also possible to adapt the value of the parameter 𝜈 , 𝜈𝑡

at each iteration 𝑡 in order to ensure that the empirical acceptance rate of the sampler

converges to a desired value 𝛼*, without losing the chain’s ergodicity [3, p. 359]. Based on

the result given by Gelman at al. [12, Theorem 3.1], 𝛼* is often set in practice to 23.4%,

despite it not always being the optimal choice [7], [36]. At iteration 𝑡+ 1, we adapt 𝜈𝑡 using

a standard Robbins-Monro recursion [3, p. 359]

log(𝜈𝑡+1) = log(𝜈𝑡) + 𝜁𝑡+1[𝛿{𝑥*
𝑡 accepted} − 𝛼*], (3.7)

where 𝛿{𝑥*
𝑡 accepted} is 1 if the proposed point 𝑥* was accepted at iteration 𝑡 and 0 other-

wise, and {𝜁𝑡}∞𝑡=1 ⊂ (0,∞)Z+ is a sequence of possibly stochastic step-sizes chosen so that

variations of {𝜈𝑡}∞𝑡=1 vanish [3, p. 353]. Although typically {𝜁𝑡}∞𝑡=1 is a deterministic and

non-increasing sequence (for example, see [3, Section 4]), more general results are available

in the literature (for example, see [37], [48]).

To conclude this chapter, we present a summary of the main steps of the KAMH sampler

in Algorithm 1; refer to Appendix B.1 for a full R implementation of the algorithm.

5In this dissertation we omit theoretical discussion on the exact conditions imposed on adaptation prob-
abilities {𝑝𝑡}∞𝑡=1 for conciseness. Refer to [37] for a rigorous treatment on the required (mild) conditions
imposed on adaptation probabilities to ensure that ergodicity of an adaptive MCMC is not lost.

20

Algorithm 1 Kernel Adaptive Metropolis Hastings, KAMH [42] (simplified version)

Input: Unnormalised target 𝜋(·) supported on 𝒳 ⊂ R𝑑, subsample size 𝑛, length of the
MCMC output chain 𝑚, scaling parameter 𝛾, initial value of scaling parameter 𝜈1 and
weights {𝜁𝑡}∞𝑡=1 used for updating parameter 𝜈𝑡, target acceptance rate 𝛼*, adaptation
probabilities {𝑝𝑡}∞𝑡=1, kernel 𝑘.

Output: MCMC chain {𝑥𝑡}𝑚𝑡=0 admitting normalised version of the target 𝜋(·) as its sta-
tionary distribution.

1: Run standard random-walk Metropolis-Hastings during burn-in phase, and set 𝑥0 equal
to the last point in the chain.

2: for 𝑡 = 1, 2, . . . ,𝑚 do
3: With probability 𝑝𝑡, update a random subsample 𝑍 , {𝑧𝑖}min(𝑛,𝑡−1)

𝑖=1 of the chain
history {𝑥𝑖}𝑡−1

𝑖=1 via sampling without replacement.
4: Sample proposed point 𝑥* from 𝑞𝑍(·|𝑥𝑡−1) = 𝒩

(︁
𝑥𝑡−1, 𝛾

2𝐼𝑑 + 𝜈2
𝑡𝑀𝑍,𝑥𝑡−1𝐻𝑀ᵀ

𝑍,𝑥𝑡−1

)︁
,

where 𝑀𝑍,𝑥𝑡−1 is given in equation (3.3) and 𝐻 = 𝐼𝑛 − 1
𝑛
1𝑛1

ᵀ
𝑛 is the centring matrix.

5: Perform standard Metropolis-Hastings rejection step with acceptance probability
𝛼(𝑥𝑡−1,𝑥

*) given in equation (3.5), and hence setting

𝑥𝑡 =

{︂
𝑥*, w.p. 𝛼(𝑥𝑡−1,𝑥

*),
𝑥𝑡−1, otherwise.

6: Update parameter 𝜈𝑡 using Robbins-Monro recursion given in equation (3.7).
7: end for

21

22

Chapter 4

Fast Kernel Adaptive

Metropolis-Hastings Algorithm

In this chapter we present the new Fast Kernel Adaptive Metropolis-Hastings (F-KAMH)

sampler, which builds upon the foundations of the original KAMH algorithm discussed in

Chapter 3. The latter algorithm provides a novel approach to sampling from multivari-

ate target distributions with non-linear dependencies between dimensions. However, as a

consequence of a direct application of the kernel trick in the adaptation procedure for the

proposal distribution, the complexity of the KAMH algorithm depends linearly on the size

of the subsample of the chain history 𝑛 at every iteration. Therefore, for the algorithm

to be usable in practice, we need to limit the maximum allowed size of the sampled chain

history to a certain value. Consequently, we are not proposing a new point based on all

available information, which can lead to poorer performance of the sampler. Optimally,

we wish to use a sampler that adapts the proposal distribution based on the whole chain

history while having constant computational cost per iteration, and also one that is easy

to update as new points enter chain history. This has been the leading motivation for our

work on the F-KAMH algorithm, in which we use the random Fourier features framework

of Rahimi & Recht [29], discussed in Section 2.3, to remove the cost dependency on 𝑛 and

allow for convenient rank-one updates, discussed in Section 4.1, on the estimated feature

space covariance.

In order to improve the scalability of the KAMH algorithm, we replace the empirical

Gaussian-like measure in RKHS ℋ by an empirical Gaussian distribution in a

𝐷-dimensional approximate feature space ℋ𝐷 = R𝐷 with a random basis obtained from

23

the random Fourier features framework. We note that we will use the tilde symbol ·̃ to

denote corresponding quantity that is calculated using kernel approximation with random

Fourier features, in an analogy to what was discussed in Chapter 3.

We proceed by letting 𝜑𝑥𝑖
∈ R𝐷 be the corresponding embedding of 𝑥𝑖 into ℋ𝐷, where

𝑍 , {𝑥𝑖}𝑡−1
𝑖=0 is now the entire current chain history, and we define Φ , [𝜑𝑥0 , . . . , 𝜑𝑥𝑡−1]

ᵀ ∈

R𝑡×𝐷. Analogically to the result presented in equation (2.3), it follows that for 𝑖, 𝑗 = 1, . . . , 𝑡,

𝐾𝑖𝑗 , 𝑘(𝑥𝑖−1,𝑥𝑗−1) ≈ 𝜑ᵀ
𝑥𝑖−1

𝜑𝑥𝑗−1
, and 𝐾 ≈ ΦΦᵀ. Consequently, the mean is then simply

given as

𝜇̃𝑍 =
1

𝑡

𝑡−1∑︁
𝑖=0

𝜑𝑥𝑖
, (4.1)

and the covariance is of the form

𝐶𝑍 =
1

𝑡

𝑡−1∑︁
𝑖=0

𝜑𝑥𝑖
𝜑ᵀ
𝑥𝑖
− 𝜇̃𝑍 𝜇̃

ᵀ
𝑍 , (4.2)

which corresponds to the standard maximum likelihood fit of a 𝐷-dimensional Gaussian. It

is then easy to obtain a feature space sample 𝜑𝑥𝑡 + 𝑓 , where

𝑓 ∼ 𝒩
(︁
𝑓
⃒⃒
0, 𝜂2𝐶𝑍

)︁
,

for some scaling parameter 𝜂 > 0 (c.f. 𝜈 in Chapter 3).

Following the procedure presented in the KAMH algorithm [42], we are interested in the

mapping of the above sample to the input space 𝒳 = R𝑑. We therefore define a RKHS

distance function ℒ̃ : 𝒳 → R such that

ℒ̃(𝑥; 𝑓,𝑥𝑡) =
1

2

⃒⃒⃒⃒⃒⃒
𝜑𝑥 − (𝜑𝑥𝑡 + 𝑓)

⃒⃒⃒⃒⃒⃒2
ℋ

=
1

2
||𝜑𝑥||2 +

1

2
||𝑓 ||2 − 𝜑ᵀ

𝑥𝜑𝑥𝑡 − 𝜑ᵀ
𝑥𝑓.

Taking a single descent step along the gradient of ℒ̃ yields a 𝑑-dimensional vector

∇𝑥 ℒ̃(𝑥; 𝑓,𝑥𝑡)
⃒⃒⃒
𝑥=𝑥𝑡

= − ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)
ᵀ 𝑓,

where the matrix [∇𝑥 𝜑𝑥]𝑥=𝑥𝑡 ∈ R𝐷×𝑑 depends on the choice of embedding; following the

notation from Section 2.3 for the case of the embedding 𝜑, given by equation (2.4), the

24

matrix is defined from partial derivatives, for 𝑗 = 1, . . . , 𝑑,

[︃
𝜕𝜑𝑥

𝜕𝑥𝑗

]︃⃒⃒⃒⃒
⃒
𝑥=𝑥𝑡

=

√︂
2

𝐷

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔1,𝑗 cos(𝜔ᵀ
1𝑥𝑡)

−𝜔1,𝑗 sin(𝜔ᵀ
1𝑥𝑡)

. . .

𝜔𝐷/2,𝑗 cos(𝜔ᵀ
𝐷/2𝑥𝑡)

−𝜔𝐷/2,𝑗 sin(𝜔ᵀ
𝐷/2𝑥𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝐷; (4.3)

and similarly for the embedding 𝜑, given by equation (2.5), it is defined from partial deriva-

tives, for 𝑗 = 1, . . . , 𝑑, as

[︃
𝜕𝜑𝑥

𝜕𝑥𝑗

]︃⃒⃒⃒⃒
⃒
𝑥=𝑥𝑡

= −
√︂

2

𝐷

⎡⎢⎢⎢⎣
𝜔1,𝑗 sin(𝜔ᵀ

1𝑥𝑡 + 𝑏1)

. . .

𝜔𝐷,𝑗 sin(𝜔ᵀ
𝐷𝑥𝑡 + 𝑏𝐷)

⎤⎥⎥⎥⎦ ∈ R𝐷, (4.4)

where 𝑤𝑖,𝑗 is the 𝑗-th component of 𝜔𝑖. Consequently, by performing without the loss of

generality a gradient descent of unit step-size, the proposed new point is

𝑥* = 𝑥𝑡 −∇𝑥 ℒ̃(𝑥)
⃒⃒
𝑥=𝑥𝑡

+ 𝜉

= 𝑥𝑡 + ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)
ᵀ 𝑓 + 𝜉,

where 𝜉 ∼ 𝒩 (0, 𝛾2𝐼𝑑) is an additional isotropic exploration term, exactly as for the KAMH

algorithm (Chapter 3). Therefore, the proposal covariance matrix 𝑅̃𝑍 ∈ R𝑑×𝑑 of the

F-KAMH algorithm is given by

𝑅̃𝑍 = 𝛾2𝐼𝑑 + 𝜂2 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)
ᵀ𝐶𝑍 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡) . (4.5)

The main steps of the F-KAMH algorithm are summarised in Algorithm 2; refer to

Appendix B.2 for a full R implementation of the algorithm. We note that, analogically to

Algorithm 1, we let the parameter 𝜂 , 𝜂𝑡 depend on iteration 𝑡 through the Robbins-Monro

recursion formula [3, p. 359]

log(𝜂𝑡+1) = log(𝜂𝑡) + 𝜁𝑡+1[𝛿{𝑥*
𝑡 accepted} − 𝛼*], (4.6)

where corresponding variables are defined exactly as in equation (3.7).

25

Algorithm 2 Fast Kernel Adaptive Metropolis Hastings, F-KAMH (simplified version)

Input: Unnormalised target 𝜋(·) supported on 𝒳 ⊂ R𝑑, length of the MCMC output chain
𝑚, embedding function 𝜑 : 𝒳 → R𝐷, scaling parameter 𝛾, initial value of scaling param-
eter 𝜂1 and weights {𝜁𝑡}∞𝑡=1 used for updating parameter 𝜂𝑡, target acceptance rate 𝛼*,
kernel 𝑘.

Output: MCMC chain {𝑥𝑡}𝑚𝑡=0 admitting normalised version of the target 𝜋(·) as its sta-
tionary distribution.

1: Run standard random-walk Metropolis-Hastings during burn-in phase, and set 𝑥0 equal
to the last point in the chain.

2: For 𝑖 = 1, . . . , 𝐷*, where 𝐷* depends on dimension 𝐷 and choice of the embedding,
sample 𝜔𝑖

𝑖𝑖𝑑∼ Ω(𝜔), and (if required) 𝑏𝑖
𝑖𝑖𝑑∼ Unif[0,2𝜋].

3: for 𝑡 = 1, 2, . . . ,𝑚 do
4: Perform rank-one update on the estimate of the feature space covariance 𝐶

(𝑡)
𝑍 , as

detailed in Section 4.1.
5: Sample proposed point 𝑥* from 𝑞𝑍

(︁
·
⃒⃒
𝛾2𝐼𝑑 + 𝜂2𝑡

(︀
[∇𝑥 𝜑𝑥]𝑥=𝑥𝑡−1

)︀ᵀ
𝐶

(𝑡)
𝑍

(︀
[∇𝑥 𝜑𝑥]𝑥=𝑥𝑡−1

)︀)︁
,

where the matrix [∇𝑥 𝜑𝑥]𝑥=𝑥𝑡−1 ∈ R𝐷×𝑑 depends on the choice of embedding – see
equations (4.3) and (4.4).

6: Perform standard Metropolis-Hastings rejection step with acceptance probability
𝛼(𝑥𝑡−1,𝑥

*) given in equation (3.5), and hence setting

𝑥𝑡 =

{︂
𝑥*, w.p. 𝛼(𝑥𝑡−1,𝑥

*),
𝑥𝑡−1, otherwise.

7: Update parameter 𝜂𝑡 using Robbins-Monro recursion given in equation (4.6).
8: end for

There exists a direct correspondence between the KAMH algorithm and the proposed

F-KAMH algorithm. In what follows, we let 𝑛 , 𝑡, and define, for 𝑖 = 1, . . . , 𝑛, 𝑧𝑖 ,

𝑥𝑖. In the latter algorithm, we use an approximation 𝑘 of the kernel 𝑘(𝑥,𝑦) such that

for all 𝑥,𝑦 ∈ 𝒳 , 𝑘(𝑥,𝑦) = 𝜑ᵀ
𝑥𝜑𝑦, which leads to an isometry 𝑘(·,𝑥) ↔ 𝜑𝑥. Since the

previously defined explicit feature map 𝜑 : R𝑑 → R𝐷 is no longer infinitely dimensional, it is

possible to establish the covariance operator in this 𝐷-dimensional feature space as given in

equation (4.2), which can be re-written in the form of 𝐶𝑍 = 1
𝑛
Φᵀ𝐻Φ, where 𝐻 = 𝐼𝑛− 1

𝑛
1𝑛1

ᵀ
𝑛

is the 𝑛 × 𝑛 centring matrix. In this framework, a sample 𝑓 ∼ 𝒩
(︁
𝑓
⃒⃒
0, 𝜂2𝐶𝑍

)︁
can be

written using two representations; the first using the primal form

𝑓 = 𝜂𝐶
1
2
𝑍𝛼, 𝛼 ∼ 𝒩 (0, 𝐼𝐷),

26

and the second using the dual form

𝑓 =
𝜂√
𝑛

Φᵀ𝐻𝛽 =
𝜂√
𝑛

𝑛∑︁
𝑖=1

𝛽𝑖 [𝜑𝑧𝑖
− 𝜇𝑍] , 𝛽 ∼ 𝒩 (0, 𝐼𝑛).

The latter representation directly relates to the derivation procedure of the KAMH algorithm

presented in Chapter 3. Here in the new parameterisation, the gradient of the objective

function ℒ̃ : 𝒳 → R that minimises the feature space distance with respect to 𝑥, can be

written as

ℒ̃(𝑥; 𝑓,𝑥𝑥𝑡)
⃒⃒⃒
𝑥=𝑥𝑡

= − ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)
ᵀ 𝑓 = − 𝜂√

𝑛
([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)

ᵀ Φᵀ𝐻𝛽,

with matrix [∇𝑥 𝜑𝑥]𝑥=𝑥𝑡 ∈ R𝐷×𝑑 as defined previously. Let 𝑀̃𝑍,𝑥𝑡 , 2[∇𝑥 𝜑𝑥]ᵀ𝑥=𝑥𝑡
Φᵀ, be such

that the 𝑖-th column of 𝑀̃𝑍,𝑥𝑡 is 2𝜑ᵀ
𝑧𝑖

[∇𝑥 𝜑𝑥]𝑥=𝑥𝑡 = 2
[︀
∇𝑥 𝜑

ᵀ
𝑧𝑖
𝜑𝑥

]︀
𝑥=𝑥𝑡

= 2
[︁
∇𝑥 𝑘(𝑧𝑖,𝑥)

]︁
𝑥=𝑥𝑡

.

Then, the derived covariance of the proposal distribution in the F-KAMH algorithm 𝑅̃𝑍 ,

given in equation (4.5), can be written in terms of the matrix 𝑀̃𝑍,𝑥𝑡 as

𝑅̃𝑍 = 𝛾2𝐼 + 𝜂2 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)
ᵀ𝐶𝑍 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)

= 𝛾2𝐼 + 𝜂2
1

4𝑛
𝑀̃𝑍,𝑥𝑡𝐻𝑀̃ᵀ

𝑍,𝑥𝑡
.

(4.7)

Finally, replacing the kernel 𝑘 with its approximation through 𝑘 in the original KAMH

algorithm yields the proposal’s covariance matrix of the exact form as in equation (4.7),

given that the scale parameter 𝜈 is set such that

𝜈 =
𝜂

2
√
𝑛
. (4.8)

It can be shown6 that 𝑘 → 𝑘 as we let 𝐷 → ∞; and consequently, the F-KAMH algorithm

is expected to converge to the KAMH procedure given that condition (4.8) is satisfied. We

further investigate this rate of convergence on a synthetic example in Section 5.2.

6Refer to Sutherland & Schneider [45, Proposition 3 and 4] for exact rates of convergence for embeddings
given in equations (2.4) and (2.5), respectively.

27

4.1 Running Estimators of Feature Space Covariances

In this section we exploit the structure of the covariance matrix 𝑅̃𝑍 , given in equation

(4.5), which defines the proposal distribution of the F-KAMH sampler, in order to provide

computational gains over the standard KAMH algorithm [42].

Use of the finite feature space approximation allows for convenient online fashion updates

on the covariance 𝐶𝑍 , given in equation (4.2). In terms of the proposed F-KAMH algorithm,

implementation of rank one updates gives a constant computational cost at every iteration

𝑡, which then does not depend on the size of the Markov chain history |{𝑥𝑖}𝑡−1
𝑖=0| = 𝑡.

Consequently, the F-KAMH algorithm can access the information from the entire sample

history to adapt the proposal’s covariance. This is in contrast to the KAMH algorithm [42],

where we work with only a subsample of a constant size 𝑛, in order to limit the complexity

cost of 𝒪(𝑛), which comes from the fact that matrix 𝑀𝑍,𝑥𝑡 , given in equation (3.3), has to

be re-evaluated at each iteration.

Furthermore, since the covariance 𝐶𝑍 is an asymptotically consistent estimator for the

true covariance of the target distribution 𝜋, it follows that continuous adaptation of

𝐶𝑍 , 𝐶
(𝑡)
𝑍 at every iteration 𝑡 does not affect the stationary distribution of the chain. Con-

sequently, in contrast to the KAMH algorithm, we do not introduce the notion of vanishing

adaptation probabilities {𝑝𝑡}∞𝑡=1, discussed in Section 3.2, for our F-KAMH sampler.

We implement a specific version of a one-pass algorithm, proposed by Welford [50],

to compute the running estimator of feature space covariance 𝐶𝑍 . Refer to [8], [23] for

alternative approaches and comparison of algorithms. Welford’s algorithm is recommended

by Knuth [21, p. 232], as it does not suffer from severe sensitivity to floating point rounding

errors, consequently allowing for a fast and reliable way of calculating the covariance matrix.

Therefore, at iteration 𝑡 + 1, we compute the covariance of the proposal distribution

𝑅̃𝑍 , 𝑅̃
(𝑡+1)
𝑍 for the F-KAMH algorithm as

𝑅
(𝑡+1)
𝑍 = 𝛾2𝐼𝑑 + 𝜂2 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡)

ᵀ 𝐶
(𝑡+1)
𝑍 ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡) ,

where 𝐶
(𝑡+1)
𝑍 corresponds to the matrix 𝐶𝑍 for iteration 𝑡+ 1. However, instead of explicitly

performing computation given in equation (4.2) to calculate 𝐶
(𝑡+1)
𝑍 , we recursively use the

result from a previous iteration 𝑡, and adjust it for the newly arrived point 𝑥𝑡+1 by firstly

28

defining, for 𝑡 ∈ Z+, the running mean 𝜇̃
(𝑡+1)
𝑍 as

𝜇̃
(𝑡+1)
𝑍 , 𝜇̃

(𝑡)
𝑍 +

𝜑𝑥𝑡+1 − 𝜇̃
(𝑡)
𝑍

𝑡 + 1

=
𝑡

𝑡 + 1
𝜇̃
(𝑡)
𝑍 +

1

𝑡 + 1
𝜑𝑥𝑡+1 ,

and then using the sum of squared terms

𝑆(𝑡+1) , 𝑆(𝑡) +
(︁
𝜑𝑥𝑡+1 − 𝜇̃

(𝑡)
𝑍

)︁(︁
𝜑𝑥𝑡+1 − 𝜇̃

(𝑡+1)
𝑍

)︁ᵀ
,

we calculate the updated covariance matrix as

𝐶
(𝑡+1)
𝑍 =

1

𝑡 + 1
𝑆(𝑡+1).

We initialise the algorithm with 𝑆(0) set to a 𝐷×𝐷 matrix of zeros, as well as 𝜇̃(0)
𝑍 set to a

𝐷-dimensional vector of zeros.

Finally we observe that performing an update on the covariance 𝐶𝑍 at every iteration

costs 𝒪(𝑑). Furthermore, since the computation of the matrix ([∇𝑥 𝜑𝑥]𝑥=𝑥𝑡) costs 𝒪(𝐷𝑑),

the overall complexity of the F-KAMH algorithm does not exceed 𝒪(𝐷2𝑑 + 𝐷𝑑2 + 𝑑3),

which is independent of iteration 𝑡 and thus the length of the chain history. In contrast,

the complexity of the KAMH algorithm, presented in Chapter 3, is 𝒪(𝑛𝑑2 + 𝑑3), where 𝑛

depends on iteration 𝑡.

29

30

Chapter 5

Experiments

In the experiments, we investigate the usefulness of the F-KAMH algorithm derived in

Chapter 4. The original KAMH algorithm has been shown by Sejdinovic et al. [42] to out-

perform competing fixed and adaptive samplers on both real data and synthetic examples of

highly non-linear target distributions. Consequently, we focus our attention to investigating

whether the random Fourier features approximation leads to further efficiency gains.

Our investigation is based on a synthetic example of a banana-shaped distribution, stated

in Definition 5.1, below. This is a highly non-linear distribution that has an analytically

available form, and from which we can easily draw independent and identically distributed

(i.i.d.) samples.

Definition 5.1 (Banana-shaped distributions [16], [42]) A family of non-linear banana-

shaped distributions follow from a specific ‘twisting’ transformation applied to a multivari-

ate Gaussian random variable. In particular, let 𝑋 ∼ 𝒩 (0,Σ) be a 𝑑-dimensional mul-

tivariate Gaussian random variable, for 𝑑 ≥ 2, and Σ = diag(𝑣, 1, . . . , 1) ∈ R𝑑×𝑑. For

𝑋 = (𝑋1, . . . , 𝑋𝑑)
ᵀ ∈ R𝑑, and 𝑌 = (𝑌1, . . . , 𝑌𝑑)

ᵀ ∈ R𝑑, apply transformation 𝑋 ↦→ 𝑌 , such

that 𝑌2 = 𝑋2 + 𝑏(𝑋2
1 − 𝑣), and 𝑌𝑖 = 𝑋𝑖 for 𝑖 ̸= 2; then denote 𝑌 ∼ ℬ(𝑏, 𝑣) for non-linearity

parameter 𝑏 > 0, and 𝑣 > 0.

By definition, a banana-shaped distribution is centred, as E(𝑌) = 0, and the joint

probability distribution function is given, for 𝑦 = (𝑦1, . . . , 𝑦𝑑)
ᵀ ∈ R𝑑, as

ℬ(𝑦; 𝑏, 𝑣) = 𝒩 (𝑦1; 0, 𝑣)𝒩
(︀
𝑦2; 𝑏

(︀
𝑦21 − 𝑣, 1

)︀)︀ 𝑑∏︁
𝑖=3

𝒩 (𝑦𝑖; 0, 1) .

31

−20 −10 0 10 20

−10

−5

0

5

10

15

20

x1

x 2

0.00

0.05

0.10

0.15

(a) Moderately twisted, ℬ(𝑦; 0.03, 100).

−20 −10 0 10 20

−10

−5

0

5

10

15

20

x1
x 2

0.00

0.05

0.10

0.15

(b) Strongly twisted, ℬ(𝑦; 0.1, 100).

Figure 5.1: Heat maps of the first two dimensions of banana-shaped distributions.

Following conventions from [16, p. 9], [42, p. 1673] the parameter 𝑣 is set to 100, while we

let the parameter 𝑏 to be 0.03 (for the case of moderately twisted banana target, shown in

Figure 5.1a), and 0.1 (for the case of strongly twisted banana target, shown in Figure 5.1b).

It is well known that the choice of associated parameters in an MCMC procedure plays

a vital role in the algorithm’s performance [17], [3], [12]. In practice, the tuning of these

parameters to ensure efficient mixing may be costly and difficult [38, p. 349]. One possible

approach is to adjust the parameters to satisfy ‘rules of thumb’, such as a desired acceptance

rate as discussed in [12]. However, since the methodology for tuning these parameters is not

the focus of this dissertation, we only briefly discuss our tuning procedure without detailing

the preformed chain convergence diagnosis and assessment of the quality of the pilot chains.

Throughout this chapter, we choose to work with KAMH and F-KAMH algorithms that

use a Gaussian RBF kernel function with bandwidth parameter 𝜎, as given in Definition 2.4.

For a radial basis function kernel family, if a sample from the target distribution is available,

one can set the kernel bandwidth to the median distance between the points, thus capturing

the rough global scale of the distribution [15, p. 1205]. In practice, trial MCMC runs can be

used to obtain a sample from which the kernel width can be inferred. It is worth noting that

this straightforward heuristic approach has no guarantee for optimality [15, p. 1205]. On

this synthetic target, for simplicity, we use a kernel bandwidth based on i.i.d. realisations

from the banana-shaped distribution.

32

During initial trial runs, both KAMH and F-KAMH algorithms explored the state space

well and achieved good mixing on various banana-shaped targets for small values of the

parameter 𝛾. This statement is supported by a visual inspection of the chain and the

corresponding form of the proposal covariance matrices, by comparing them with the readily

available exact analytical form of the target. Consequently, throughout the investigation we

fix parameter 𝛾 = 0.5. Parameters 𝜈𝑡, 𝜂𝑡 that scale the adaptive part of the covariance matrix

of the proposal distribution are learned automatically in an adaptive manner by aiming to

reach an acceptance rate of 𝛼* = 23.4%, with the initial values inferred from the trial runs.

The weights {𝜁𝑡}∞𝑡=1 in equations (3.7) and (4.6) are set to 𝜁𝑡 = (𝑡 − 1000)−1 for 𝑡 > 1000

and zero otherwise; this choice ensures the vanishing adaptation property while preventing

adaptation during the initial period, which was empirically found to lead to unstable results.

Since in our investigation we focus on the mixing properties of the resulting chains, these

are initialised at the stationarity, i.e. the initial point 𝑥0 is set to an i.i.d. sample generated

from the target. Therefore, the burn-in phase was kept arbitrarily small at 100 iterations.

Finally we note that, in the case of the KAMH algorithm, we stop the adaptation of the

proposal distribution after 15000 iterations to ensure that the resultant chain is ergodic.

The first experiment, detailed in Section 5.1, investigates the possible gains of the F-KAMH

algorithm in terms of sampling efficiency compared to the KAMH sampler of [42]. In Sec-

tion 5.2 we empirically verify the convergence of the proposal distribution’s covariance of

the F-KAMH algorithm to that of the KAMH sampler as the number of random Fourier

features 𝐷 increases.

5.1 Sampling Efficiency

In the first experiment, we investigate the sampling efficiency measured in terms of the

effective sample size (ESS) as well as ESS per unit of computational time. In our proce-

dure, we use the initial sequence estimators method [46, Section 2.3] to compute the ESS

for each dimension of the MCMC chain. The investigation is based on results from two

synthetic target distributions: the 8-dimensional moderately twisted banana-shaped distri-

bution, ℬ(0.03, 100), and the 8-dimensional strongly twisted banana-shaped distribution,

ℬ(0.1, 100). We assess the effectiveness of a sampler by considering the mean ESS of the

33

first two dimensions of the target distribution. Such an approach puts emphasis on the

performance of an algorithm in a highly non-linear setting7, in contrast to working with a

measure that takes the mean ESS across all dimensions.

Each ESS measure was calculated on an output chain of length 20000 with the first 5000

samples discarded (adaptation period burn-in phase). For the KAMH algorithm we vary

the size of the subsample of the chain history 𝑛 that is used for adapting the covariance

matrix; we investigate two cases: 𝑛 = 600 and 𝑛 = 1000. For the F-KAMH algorithm we

vary the dimensionality 𝐷, which corresponds to the number of random Fourier features; we

consider values ranging from 10 to 600. The presented results are based on 50 independent

runs.

We firstly consider the computed unnormalised ESS measure. Results for the ℬ(0.03, 100)

target are given in Figure 5.2, and for the ℬ(0.03, 100) target results are given in Figure 5.3.

In general, samplers performed worse in terms of ESS on the ℬ(0.1, 100) target, which

has more highly non-linear structure across its first two dimensions. Moreover, the observed

improvement in performance for the KAMH algorithm with 𝑛 = 1000 samples from chain

history in contrast to 𝑛 = 600 is more evident on the ℬ(0.1, 100) target. This suggests that

for targets with higher non-linear structure, the number of past points used for adapting

the proposal has a greater impact on the performance of the sampler. Consequently, we

expect the F-KAMH algorithm, which uses the entire available chain history to provide

a more significant advantage over the standard KAMH algorithm in a highly non-linear

context and when the length of the output chain 𝑚 ≫ 𝑛. This statement is supported

by our results, where we observe that F-KAMH is doing significantly better than KAMH

with 𝑛 = 600 even for small values of 𝐷 on the ℬ(0.1, 100) target, whereas it achieves

poorer performance in terms of ESS on the ℬ(0.03, 100) target. We thus infer from the

experiment, that on less “complicated” target distributions (i.e. with lesser non-linearities),

the induced noise due to approximation error with random Fourier features has a stronger

negative impact on the quality of the proposal of the F-KAMH sampler compared to that of

the KAMH sampler, than the gains related to the use of the entire chain history to learn the

covariance structure. On the other hand, the more highly non-linear the target distribution

is, the larger the number of points in the chain history required to learn the appropriate

7We have observed that for all generated chains, independent of algorithm, the ESS for the first two
dimensions for both 8-dimensional ℬ(0.03, 100) and ℬ(0.1, 100) targets was significantly lower than for other
dimensions due to a highly non-linear structure of the distribution found in those first two dimensions.

34

●

● ●

●

●

● ●

●
● ●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

0 100 200 300 400 500 600

0

50

100

150

Number of RFF (dimension D)

E
S

S

KAMH, n = 600

KAMH, n = 1000

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●
● ●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

KAMH
F−KAMH, embedding 1 (sin & cos)
F−KAMH, embedding 2 (cos & b)

Figure 5.2: The variation in average effective sample size with the number of random Fourier
features on a moderately twisted 8-dimensional ℬ(0.03, 100) target. The results of the KAMH
samplers with chain history subsample size 𝑛 = 600 and 𝑛 = 1000 are shown in black,
F-KAMH with embedding (2.4) is shown in green, and embedding (2.5) is shown in red.
Error bars represent 95% confidence intervals.

proposal distribution, and in that setting F-KAMH is expected to outperform the KAMH

sampler in terms of ESS. We also note that the choice of the form of the random features

(embedding) does not have a statistically significant effect on the achieved unnormalised

ESS.

The use of a larger number of points in the chain history to infer the covariance structure

of the target distribution is not the only advantage of the F-KAMH algorithm, however. The

random Fourier features framework allows for the reduction of computational time for cal-

culating the covariance matrix of the proposal distribution at each iteration of the F-KAMH

algorithm. Consequently, we investigate this by considering the ESS per unit of computa-

tional time as a measure of assessing effectiveness of a given sampler. Respective results,

in terms of this new measure of performance, are given in Figure 5.4 for the ℬ(0.03, 100)

35

●

●

●

● ●

●

●
●

● ●

●

●

● ●

●
●

● ●

●

●

● ● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

0

20

40

60

80

100

Number of RFF (dimension D)

E
S

S

KAMH, n = 600

KAMH, n = 1000

●

●

●

● ●

●

●
●

● ●

●

●

● ●

●
●

● ●

●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

● ●

●
●

● ●

●

●

● ● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

KAMH
F−KAMH, embedding 1 (sin & cos)
F−KAMH, embedding 2 (cos & b)

Figure 5.3: The variation in average effective sample size with the number of random Fourier
features on a strongly twisted 8-dimensional ℬ(0.1, 100) target. The results of the KAMH
samplers with chain history subsample size 𝑛 = 600 and 𝑛 = 1000 are shown in black,
F-KAMH with embedding (2.4) is shown in green, and embedding (2.5) is shown in red.
Error bars represent 95% confidence intervals.

target, and in Figure 5.5 for the ℬ(0.1, 100) target.

The F-KAMH sampler clearly outperforms KAMH for a large range of number of ran-

dom Fourier features 𝐷 in terms of ESS normalised by computation time on both target

distributions considered. In general, for very small values of 𝐷 < 50, the random Fourier

features approximation is poor, which significantly affects the proposal distribution quality

and consequently leads to low values of both the normalised and unnormalised ESS measure.

On the other hand, large values of 𝐷 > 350 lead to increased complexity without signifi-

cantly improving the quality of the proposal. In such a scenario, the F-KAMH sampler has a

weaker performance than its competitor, as the resultant gains in unnormalised ESS are not

proportional to the additional cost of larger 𝐷. Furthermore, due to a slightly faster code

implementation of the embedding given in (2.5) in contrast to embedding (2.4), the former

36

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●

0 100 200 300 400 500 600

0

1

2

3

4

Number of RFF (dimension D)

E
S

S
 p

er
 c

om
pu

ta
tio

na
l t

im
e

KAMH, n = 600

KAMH, n = 1000

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

KAMH
F−KAMH, embedding 1 (sin & cos)
F−KAMH, embedding 2 (cos & b)

Figure 5.4: The variation in average effective sample size per computational time with the
number of random Fourier features on a moderately twisted 8-dimensional ℬ(0.03, 100) tar-
get. Results of the KAMH samplers with chain history subsample size 𝑛 = 600 and 𝑛 = 1000
are shown in black, F-KAMH with embedding (2.4) is shown in green, and embedding (2.5)
is shown in red. Error bars represent 95% confidence intervals.

achieves a better performance on average; that said the difference is not statistically signif-

icant. Therefore, the number of random Fourier features is an important hyper-parameter

that if tuned carefully allows the F-KAMH sampler to achieve efficiency exceeding that of

the KAMH algorithm. We observe that for a target distribution with a more non-linear

structure the optimal value of 𝐷 is larger.

In analogy, the performance of the KAMH sampler depends on the size of the chain

history subsample 𝑛. Although, larger 𝑛 leads to a higher unnormalised ESS, it also increases

the complexity cost of the algorithm. The optimal value of 𝑛 based on this trade-off depends

on the target distribution; in the case of more complex targets, such as ℬ(0.1, 100), we

observe that increasing 𝑛 significantly improves both the normalised and unnormalised ESS.

As a result, KAMH with 𝑛 = 1000 achieves better ESS per computational time than KAMH

37

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

0 100 200 300 400 500 600

0.0

0.5

1.0

1.5

2.0

2.5

Number of RFF (dimension D)

E
S

S
 p

er
 c

om
pu

ta
tio

na
l t

im
e

KAMH, n = 600

KAMH, n = 1000
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

KAMH
F−KAMH, embedding 1 (sin & cos)
F−KAMH, embedding 2 (cos & b)

Figure 5.5: The variation in average effective sample size per computational time with the
number of random Fourier features on a strongly twisted 8-dimensional ℬ(0.1, 100) target.
Results of KAMH samplers with chain history subsample size 𝑛 = 600 and 𝑛 = 1000 are
shown in black, F-KAMH with embedding (2.4) is shown in green, and embedding (2.5)
is shown in red. Error bars represent 95% confidence intervals.

with 𝑛 = 600. On the other hand, for less non-linear targets, such as ℬ(0.03, 100), increasing

the size of the subsample does not offer significant improvements in terms of unnormalised

ESS and hence KAMH with 𝑛 = 600 is seen to outperform KAMH with 𝑛 = 1000 in this

setting.

Finally, we note that in practice, for example in the Bayesian Gaussian Process classi-

fication setup, there might be an additional constant computational cost of evaluating (or

estimating) the target distribution 𝜋. In that context, the ESS per time would behave more

similarly to the unnormalised ESS measure: higher cost of the target evaluation in com-

parison to sampling would imply higher similarity between them. An example of a plot of

a normalised ESS with a significant additional constant cost added at each iteration for a

ℬ(0.1, 100) target is given in Figure A.1 in Appendix A. In that scenario, the KAMH al-

38

gorithm with 𝑛 = 1000 achieves a comparable performance to a well optimised (in terms of

hyper-parameter 𝐷) F-KAMH algorithm. That said, as discussed earlier, for longer chains

the F-KAMH algorithm can theoretically achieve higher unnormalised ESS than the KAMH

sampler, since it adapts the proposal based on all the points of the chain history.

In conclusion, F-KAMH is a more flexible sampler which leads to an increase in the

ESS per unit time over the standard KAMH algorithm by either significantly reducing the

computational cost (in the case of less non-linear in structure targets), or by increasing the

unnormalised ESS by adapting the proposal distribution based on the entire chain history

(in the case of longer chains on more complex targets). Careful tuning for an optimal value of

𝐷 can lead to significant performance gains of the F-KAMH algorithm over its competitors.

5.2 Convergence of F-KAMH and Tail Behaviour

In the second experiment, we study the effect of the dimension 𝐷, corresponding to the

number of random Fourier features, on the empirical rate of convergence of the F-KAMH

algorithm’s proposal distribution covariance matrix 𝑅̃𝑍 , to the original covariance matrix

𝑅𝑍 , obtained through the KAMH procedure. Furthermore, we investigate the behaviour

of the F-KAMH algorithm in the tails and in areas of low probability distribution, where

there are no, or very few, local points that belong to the chain’s history 𝑍 , {𝑥𝑖}𝑛𝑖=0.

Consequently, we compare the aforementioned average approximation error of the F-KAMH

algorithm to one that is achieved by the KAMH sampler that calculates the covariance

matrix of the proposal distribution based on a reduced size of the chain history subsample 𝑛.

Our procedure is as follows. At selectively chosen locations compute the proposal co-

variance matrix of the KAMH algorithm based on a chain history consisting of 𝑛 = 5000

i.i.d. points sampled directly from the target distribution. Consequently, compare in terms

of the Frobenius norm this result with the proposal distribution covariance matrix obtained

through the F-KAMH procedure with 𝐷 ranging from 10 to 600, and that of the KAMH

sampler with 𝑛 ∈ {250, 1000, 2000, 3000} bootstrapped chain history points. We let an av-

erage of these approximation errors to be the measure of error induced by random Fourier

features (or, in the case of the KAMH procedure, induced by the reduction in chain history

subsample size). We investigate the rate of convergence of F-KAMH’s proposal covariance

with varying number of random Fourier features 𝐷 in two separate scenarios: the first in-

39

cludes 15 evenly spread points across regions of high density of the banana-shaped target

(Figure 5.6 illustrates the selected locations, denoted as red dots, on a moderately twisted

2-dimensional ℬ(0.03, 100) target8), and a second scenario in which evaluation is done on a

single distant point in an area of low probability, (0,−200, 0, . . . , 0)ᵀ ∈ R𝑑.

The above approach allows us to investigate the empirical convergence rate of the pro-

posal distribution of the F-KAMH sampler to the exact form given by the KAMH algo-

rithm, and to assess whether approximation error due to random Fourier features affects the

F-KAMH sampler’s convergence to a random walk Metropolis-Hastings at distant points

where no chain history is locally available. Similarly to the previous experiment, we base

our investigation on two 8-dimensional targets: the moderately twisted ℬ(0.03, 100) target,

and the strongly twisted ℬ(0.1, 100) target.

Figure 5.6 illustrates an example of the 95% confidence regions for the proposal distribu-

tion on a 2-dimensional strongly twisted ℬ(0.1, 100) target based on 𝑛 = 2500 chain history

points and the F-KAMH algorithm with 𝐷 = 350 random Fourier features; approximation

of F-KAMH using embedding (2.4) (green ellipse) and embedding (2.5) (red ellipse) to the

KAMH procedure (white ellipse) is observed to be better at locations with a higher num-

ber of local chain history points. We note that similar behaviour has been observed for

8-dimensional ℬ(0.03, 100) and ℬ(0.1, 100) targets, this however may not be conveniently

visualised as in the case of a 2-dimensional target.

Figure 5.7 shows the variation of the log of average change in covariance approximation

error with the change in the number of random Fourier features 𝐷, for an 8-dimensional

strongly twisted ℬ(0.1, 100) target, evaluated at locations of high density on 250 independent

runs. Refer to Appendix A for the respective plot on a classical scale (Figure A.2), and

analogical plots for an 8-dimensional moderately twisted ℬ(0.03, 100) target on a log-log

scale (Figure A.3), as well as on a classical scale (Figure A.4).

We firstly note that the estimated empirical rate of convergence has been similar for both

considered target distributions. That said, samplers achieved on average higher approxima-

tion error on the moderately twisted ℬ(0.03, 100) target. The magnitude of approximation

errors is directly dependent on the choice of the respective scales 𝜈, 𝜂. Our choice of parame-

ter 𝜂 follows from that of Section 5.1, and thus depends on the target distribution, while 𝜈 is
8We extend these points to a higher dimensional space by centring them at zero for each new component in

the larger dimension; for example point (0,−10)ᵀ ∈ R2 is extended to (0,−10, 0, . . . , 0)ᵀ ∈ R8. Furthermore,
for a moderately twisted banana-shaped target we choose evenly spread points in an analogical manner (we
omit presenting them for brevity).

40

Figure 5.6: 95% confidence regions for F-KAMH when 𝐷 = 350 with embedding (2.4)
(green ellipse), embedding (2.5) (red ellipse), and the KAMH algorithm (white ellipse),
evaluated at selectively chosen points (red points), on a strongly twisted 2-dimensional
ℬ(0.1, 100) target. 2500 i.i.d. samples from the target (black and white points) taken as
a chain history.

inferred from equation (4.8). Consequently, we limit our discussion only to the convergence

rate in terms of the number of random Fourier features 𝐷.

Furthermore, we only present the results of the experiment for the second scenario, in

which covariance matrices were evaluated at a distant point (0,−200, 0, . . . , 0)ᵀ ∈ R8, for

the strongly twisted 8-dimensional ℬ(0.1, 100) target (on a log-log scale) in Figure A.5,

Appendix A. We note that we omit the presentation of results for the moderately twisted

8-dimensional ℬ(0.03, 100) target as they exhibit exactly the same statistical properties as

in the case of the ℬ(0.1, 100) target.

The slope coefficient of the line of best fit, for both moderately and strongly twisted

banana-shaped targets, is approximately -0.6 for the experiment evaluated at selectively

chosen points on high density locations, and it is approximately -1 at a location of low

probability, i.e. the point (0,−200, 0, . . . , 0)ᵀ ∈ R8. Therefore, we conclude that the average

41

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●●●●●●●

●

●

●
●

●
●

3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

Log of the number of RFF (dimension D)

Lo
g

of
 th

e
av

er
ag

e
co

va
ria

nc
e

ap
pr

ox
im

at
io

n
er

ro
r

KAMH, n = 250

KAMH, n = 1000

KAMH, n = 2000

KAMH, n = 3000

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●●●●●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●●●

●

●

●

●
●

●

●

●

KAMH
Embedding 1 (sin & cos)
Embedding 2 (cos & b)

Figure 5.7: The effect of the number of random Fourier features on average F-KAMH pro-
posal covariance convergence to the one of KAMH with 𝑛 = 5000 in terms of the Frobenius
norm (on a log-log scale). Results are given for a strongly twisted 8-dimensional ℬ(0.1, 100)
target based on selectively chosen points. F-KAMH with embedding (2.4) is shown in green,
embedding (2.5) is shown in red. Average error in approximation for KAMH with smaller
values of 𝑛 is shown in black. Results are for 250 independent runs with 5000 i.i.d. samples
used to learn covariances. Error bars represent 95% confidence intervals.

covariance approximation error depends on the number of Fourier features, where it appears

to be proportional to 𝐷−0.6 at a typical location on the 8-dimensional banana-shaped target

distribution, and 𝐷−1 at locations of very low probability density (where few chain history

points are available).

Consequently, the F-KAMH algorithm is able to match the performance, expressed in

terms of the quality of the proposal distribution, to that of the KAMH algorithm as we

increase the number of random Fourier features 𝐷, even in a practical setting where large

values of 𝐷 ≫ 1000 are not computationally feasible. This agrees with our observations

from the previous experiment, as discussed in Section 5.1, in which we emphasise the role

of number of points used in constructing the proposal. Based on Figure 5.7, we observe

42

that the F-KAMH algorithm can lead to a better tuned proposal distribution (even for

smaller values of 𝐷) than the original KAMH sampler if there is a significant difference in

the number of points in the chain history 𝑛 used by the two procedures to tune the proposal

distribution9. For example, on a 8-dimensional ℬ(0.1, 100) target distribution, F-KAMH

achieves a better approximation to the KAMH algorithm with 𝑛 = 5000 than KAMH with

𝑛 = 3000 for any value of 𝐷 > 300, and similarly achieves better approximation than

KAMH with 𝑛 = 250 for any values of 𝐷 > 70. However, it should be noted that in this

experiment covariances have been learned from i.i.d. samples, whereas in practice this is not

the case, as these points depend on the Markov chain itself. Therefore, since the effective

sample size of such a chain is much lower (which also depends on the complexity of the

target distribution), we expect the approximation gains from using an additional 2000 chain

history points to be less significant than illustrated in this experiment. That said, provided

that the chains are sufficiently long, we expect the F-KAMH sampler to achieve on average a

better unnormalised ESS than a comparable KAMH sampler with fixed size of chain history

subsample 𝑛, consequently leading to even further gains in terms of ESS per time.

Finally we note on the surprising result that, although both the 𝜑 embedding given in

equation (2.5) and the 𝜑 embedding given in equation (2.5) have effectively shown similar

approximation error, the latter was consistently superior in terms of smaller variation in

the approximation error, as well as in terms of (not statistically significantly) lower mean of

that error; despite a remark in Section 2.3 that 𝜑 has some theoretically superior properties.

9This general observation does not hold at the tails, where by construction the number of local points is
low, and thus the decay rate of the F-KAMH algorithm to a random walk Metropolis-Hastings is affected
by 𝐷; which is a contrast to the KAMH sampler.

43

44

Chapter 6

Summary

We have proposed the new Fast Kernel Adaptive Metropolis-Hastings (F-KAMH) MCMC

sampler that uses random Fourier features of [29] to scale-up the Kernel Adaptive Metropolis-

Hastings (KAMH) sampler [42]. In the experiments (Chapter 5) we verified empirically

that our approach leads to a significant improvement in the effective sample size (ESS)

per computation unit. There are two main factors that contribute to this result. Firstly,

implementation of the rank-one updates framework, presented in Section 4.1, enables the

use of the entire available chain history to adapt the proposal distribution, while keeping

the computational cost constant at every iteration 𝑡 ∈ Z+. Consequently, the achieved ESS

of the F-KAMH algorithm may exceed that of the KAMH sampler, provided that the length

of the output chain 𝑚 is sufficiently larger than the size of the chain history subsample 𝑛

used by the KAMH sampler. A further advantage of such an approach is that it allows for

a continuous adaptation scheme, without affecting the Markov chain ergodicity. Secondly,

for a 𝑑-dimensional target distribution 𝜋, the complexity of the F-KAMH algorithm with

𝐷 random Fourier features is constant at every iteration 𝑡 ∈ Z+ and does not exceed

𝒪(𝐷2𝑑+𝐷𝑑2 + 𝑑3), in contrast to the KAMH algorithm, for which the cost is 𝒪(𝑛𝑑2 + 𝑑3).

The results of our experiments support the claim that good kernel approximation is achieved

already for relatively small values of 𝐷, such as 𝐷 < 500. Therefore, in general, the

complexity of F-KAMH can be significantly reduced without affecting in a significant degree

the quality of the proposal distribution.

Sejdinovic et al. [42, Section 5] have demonstrated that the KAMH sampler achieves

a better performance on non-linear target distributions than other currently available ap-

proaches. Therefore, we expect the newly proposed F-KAMH sampler to be competitive

45

to, and in many situations, outperform state-of-the-art procedures in a context where the

highly-nonlinear target distribution is analytically intractable or too complex to be evalu-

ated.

6.1 Further Work

The idea of random Fourier features has recently also been applied to an alternative kernel-

based sampler in [44]. This new approach to a Hamiltonian Monte Carlo, termed Kamil-

tonian Monte Carlo (KMC), aims to adaptively learn the target’s gradient structure. Con-

sequently, KMC is a gradient-free approach applicable in intractable likelihood problems.

Strathmann et al. [44] empirically verified the robustness of this sampler to increasing di-

mensionality [44, p. 2]. Since this is often not true in a classical kernel density estimation

framework [49, Section 6.5], KMC offers an interesting alternative to our F-KAMH sam-

pler in higher dimensional problems. As an extension to this project, we propose to run a

comparison between F-KAMH and KMC samplers in a varied dimensional space setting.

Future work includes the application of the Fastfood approach of [22] to approximate

kernel expansions that directly relate to the idea of random Fourier features (and its further

generalisation as Random Kitchen Sinks in [30]), in order to reduce the computational cost

of the F-KAMH algorithm.

Furthermore, we propose in the future to compare the effectiveness of the F-KAMH

and KAMH algorithms for sampling covariance hyper-parameters in a Bayesian Gaussian

Process classification setting in order to illustrate its usefulness in a real data context.

46

Bibliography

[1] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An

introduction to MCMC for machine learning. Machine learning, 50(1-2):5–43, 2003.

[2] Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient

Monte Carlo computations. Annals of Statistics, 37(2):697–725, 2009.

[3] Christophe Andrieu and Johannes Thoms. A Tutorial on Adaptive MCMC. Statistics

and Computing, 18(4):343–373, December 2008.

[4] N. Aronszajn. Theory of Reproducing Kernels. Transactions of the American Mathe-

matical Society, 68(3):337–404, 1950.

[5] G. BakIr, B. Schölkopf, and J. Weston. On the Pre-Image Problem in Kernel Methods,

pages 284–302. Idea Group Publishing, Hershey, PA, USA, 2007.

[6] Mark A Beaumont. Estimation of population growth or decline in genetically monitored

populations. Genetics, 164(3):1139–1160, July 2003.

[7] Mylène Bédard. Optimal acceptance rates for Metropolis algorithms: Moving beyond

0.234. Stochastic Processes and their Applications, 118(12):2198–2222, 2008.

[8] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Algorithms for Computing

the Sample Variance: Analysis and Recommendations. The American Statistician,

37(3):242–247, 1983.

[9] Maurizio Filippone and Mark Girolami. Pseudo-Marginal Bayesian Inference for Gaus-

sian Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):1–1, 2014.

47

[10] Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Dimensionality Reduction for

Supervised Learning with Reproducing Kernel Hilbert Spaces. J. Mach. Learn. Res.,

5:73–99, 2004.

[11] A. E. Gelfand and S. K. Sahu. On Markov chain Monte Carlo acceleration. Machine

learning, 3:261–276, 1994.

[12] A. Gelman, G. O. Roberts, and W. R. Gilks. Efficient Metropolis jumping rules. In

Bayesian Statistics, volume 5, pages 599–607. Oxford University Press, 1996.

[13] I. I. Gihman and A. V. Skorohod. The Theory of Stochastic Processes, volume 1.

Springer Verlag, Berlin, 1974.

[14] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123–214, 2011.

[15] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massi-

miliano Pontil, Kenji Fukumizu, and Bharath K. Sriperumbudur. Optimal kernel choice

for large-scale two-sample tests. In Advances in Neural Information Processing Systems

25, pages 1205–1213. Curran Associates, Inc., 2012.

[16] Heikki Haario, Eero Saksman, and Johanna Tamminen. Adaptive proposal distribution

for random walk, Metropolis algorithm. Computational Statistics, 14:375–395, 1999.

[17] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive Metropolis algo-

rithm. Bernoulli, 7(2):223–242, April 2001.

[18] Schölkopf B. Hofmann, T. and A. J. Smola. Kernel Methods in Machine Learning.

Annals of Statistics, 36(3):1171–1220, 2008.

[19] J.K. Hunter and B. Nachtergaele. Applied Analysis. World Scientific, 2001.

[20] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal. Markov

Chain Monte Carlo in Practice: A Roundtable Discussion. The American Statistician,

52(2):93–100, May 1998.

48

[21] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,

volume 2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd

edition, 1997.

[22] Quoc V. Le, Tamás Sarlós, and Alexander J. Smola. Fastfood - Computing Hilbert

Space Expansions in loglinear time. In Proceedings of the 30th International Conference

on Machine Learning, ICML, pages 244–252, June 2013.

[23] Robert F. Ling. Comparison of Several Algorithms for Computing Sample Means and

Variances. Journal of the American Statistical Association, 69(348):859–866, 1974.

[24] Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien Bel-

let, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha. How to

Scale Up Kernel Methods to Be As Good As Deep Neural Nets. CoRR, abs/1411.4000,

2014.

[25] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of State Calculations by Fast Computing Machines.

The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[26] Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain

Monte Carlo, 54:113–162, 2010.

[27] J. R. Norris. Markov Chains. Number 2008 in Cambridge Series in Statistical and

Probabilistic Mathematics. Cambridge University Press, 1997.

[28] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2013.

[29] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In In

Neural Infomration Processing Systems, 2007.

[30] Ali Rahimi and Benjamin Recht. Weighted Sums of Random Kitchen Sinks: Replac-

ing minimization with randomization in learning. In Advances in Neural Information

Processing Systems 21, pages 1313–1320. Curran Associates, Inc., 2009.

[31] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, Cambridge, MA, USA, 2005.

49

[32] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Functional

analysis. Academic Press Inc., Harcourt Brace Jovanovich Publishers, New York, 1980.

[33] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer

Texts in Statistics). Springer-Verlag New York, Secaucus, NJ, USA, 2005.

[34] Christian P. Robert and George Casella. Introducing Monte Carlo Methods with R.

Springer-Verlag New York, 1 edition, 2010.

[35] G. O. Roberts and O. Stramer. Langevin Diffusions and Metropolis-Hastings Algo-

rithms. Methodology & Computing in Applied Probability, 4(4):337–357, 2002.

[36] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling for various Metropolis-

Hastings algorithms. Statist. Sci., 16(4):351–367, November 2001.

[37] Gareth O. Roberts and Jeffrey S. Rosenthal. Coupling and ergodicity of adaptive

Markov chain Monte Carlo algorithms. J. Appl. Probab., 44(2):458–475, March 2007.

[38] Gareth O. Roberts and Jeffrey S. (Jeffrey Seth) Rosenthal. Examples of adaptive

MCMC. Journal of Computational and Graphical Statistics, Vol.18(No.2):349–367,

2009.

[39] W. Rudin. Function Theory in the Unit Ball of Cn. Grundlehren der mathematischen

Wissenschaften. Springer New York, 2012.

[40] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Reg-

ularization, Optimization, and Beyond. Adaptive computation and machine learning.

MIT Press, Cambridge, MA, USA, 2002.

[41] B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel Methods in Computational Biology. A

Bradford book. Bradford Bks, 2004.

[42] D. Sejdinovic, H. Strathmann, M.G. Lomeli, C. Andrieu, and A. Gretton. Kernel Adap-

tive Metropolis-Hastings. In International Conference on Machine Learning, JMLR

W&CP 32(2), pages 1665–1673, 2014.

[43] I. Steinwart and A. Christmann. Support Vector Machines. Information Science and

Statistics. Springer New York, 2008.

50

[44] H. Strathmann, D. Sejdinovic, S. Livingstone, Z. Szabo, and A. Gretton. Gradient-free

Hamiltonian Monte Carlo with Efficient Kernel Exponential Families. In Advances in

Neural Information Processing Systems (NIPS), volume 28, 2015.

[45] Dougal J. Sutherland and Jeff G. Schneider. On the Error of Random Fourier Features.

In Uncertainty in Artificial Intelligence (UAI), 2015.

[46] M. B. Thompson. A Comparison of Methods for Computing Autocorrelation Time.

CoRR, abs/1011.0175, 2010.

[47] Bharath Kumar Sriperumbudur Vangeepuram. Reproducing Kernel Space Embeddings

and Metrics on Probability Measures. PhD thesis, University of California, San Diego,

2010.

[48] Matti Vihola. On the stability and ergodicity of adaptive scaling Metropolis algorithms.

Stochastic Processes and their Applications, 121(12):2839–2860, 2011.

[49] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[50] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics, 4(3):419–420, August 1962.

[51] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge University Press, 2005.

51

52

Appendix A

Additional Figures

●

●

●

● ●

●

●
●

● ●

●

●

● ●

● ●

● ●

●

●

● ● ●

●
● ●

●

●

●

●
●

●

●

●

● ●

0 100 200 300 400 500 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of RFF (dimension D)

E
S

S
 p

er
 c

om
pu

ta
tio

na
l t

im
e

KAMH, n = 600

KAMH, n = 1000

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●
●

● ●

●

●

● ● ●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

● ●

● ●

● ●

●

●

● ● ●

●
● ●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

● ●
●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

KAMH
F−KAMH, embedding 1 (sin & cos)
F−KAMH, embedding 2 (cos & b)

Figure A.1: The effect of the number of random Fourier features on the variation in average
effective sample size per computational time with added additional constant cost of evaluating
the target distribution at each iteration. Results shown for a strongly twisted 8-dimensional
ℬ(0.1, 100) target. Results of KAMH samplers with size of the chain history subsample
𝑛 = 600 and 𝑛 = 1000 are shown in black, F-KAMH with embedding (2.4) is shown in
green, and embedding (2.5) is shown in red. Error bars represent 95% confidence intervals.

53

●

●

●

●

●

●

●
●

●
● ●

0 100 200 300 400 500 600

5

10

15

Number of RFF (dimension D)

A
ve

ra
ge

 c
ov

ar
ia

nc
e

ap
pr

ox
im

at
io

n
er

ro
r

KAMH, n = 250

KAMH, n = 1000

KAMH, n = 2000

KAMH, n = 3000

●

●

●

●

●

●

●

●
●

●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

KAMH
Embedding 1 (sin & cos)
Embedding 2 (cos & b)

Figure A.2: The effect of number of random Fourier features on average F-KAMH proposal
covariance convergence to the one of KAMH with 𝑛 = 5000 in terms of the Frobenius norm
(on a classical scale). Results given for a strongly twisted 8-dimensional ℬ(0.1, 100) target,
based on selectively chosen points. F-KAMH with embedding (2.4) is shown in green,
embedding (2.5) is shown in red. Average error in approximation for KAMH with smaller
values of 𝑛 is shown in black. Results are for 250 independent runs with 5000 i.i.d. samples
used to learn covariances. Error bars represent 95% confidence intervals.

54

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ●●
●●

●●●●●●●

●

●
●

●
●

●

3 4 5 6

1.0

1.5

2.0

2.5

3.0

3.5

Log of the number of RFF (dimension D)

Lo
g

of
 th

e
av

er
ag

e
co

va
ria

nc
e

ap
pr

ox
im

at
io

n
er

ro
r

KAMH, n = 250

KAMH, n = 1000

KAMH, n = 2000

KAMH, n = 3000

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ● ● ●
●●

●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●

●
●●●●

●

●

●
●

●
●

●

●

KAMH
Embedding 1 (sin & cos)
Embedding 2 (cos & b)

Figure A.3: The effect of number of random Fourier features on average F-KAMH proposal
covariance convergence to one of KAMH with 𝑛 = 5000 in terms of the Frobenius norm (on a
log-log scale). Results given for a moderately twisted 8-dimensional ℬ(0.03, 100) target, based
on selectively chosen points. F-KAMH with embedding (2.4) is shown in green, embedding
(2.5) is shown in red. Average error in approximation for KAMH with smaller values of 𝑛
is shown in black. Results are for 250 independent runs with 5000 i.i.d. samples used to
learn covariances. Error bars represent 95% confidence intervals.

55

●

●

●

●

●

●

●
●

●
● ●

0 100 200 300 400 500 600

5

10

15

20

25

30

Number of RFF (dimension D)

A
ve

ra
ge

 c
ov

ar
ia

nc
e

ap
pr

ox
im

at
io

n
er

ro
r

KAMH, n = 250

KAMH, n = 1000

KAMH, n = 2000

KAMH, n = 3000

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

KAMH
Embedding 1 (sin & cos)
Embedding 2 (cos & b)

Figure A.4: The effect of number of random Fourier features on average F-KAMH proposal
covariance convergence to one of KAMH with 𝑛 = 5000 in terms of the Frobenius norm (on
a classical scale). Results given for a moderately twisted 8-dimensional ℬ(0.03, 100) target,
based on selectively chosen points. F-KAMH with embedding (2.4) is shown in green,
embedding (2.5) is shown in red. Average error in approximation for KAMH with smaller
values of 𝑛 is shown in black. Results are for 250 independent runs with 5000 i.i.d. samples
used to learn covariances. Error bars represent 95% confidence intervals.

56

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●

●

●

●

●
●

●

3 4 5 6

−1

0

1

2

Log of the number of RFF (dimension D)

Lo
g

of
 th

e
av

er
ag

e
co

va
ria

nc
e

ap
pr

ox
im

at
io

n
er

ro
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●

●

●

●

●

●

●

●

●

KAMH
Embedding 1 (sin & cos)
Embedding 2 (cos & b)

Figure A.5: The effect of number of random Fourier features on average F-KAMH proposal
covariance convergence to one of KAMH with 𝑛 = 5000 in terms of the Frobenius norm
(on a log-log scale). Results given for a strongly twisted 8-dimensional ℬ(0.1, 100) target,
based on (0,−200, 0, . . . , 0)ᵀ ∈ R𝑑 point. F-KAMH with embedding (2.4) is shown in green,
embedding (2.5) is shown in red. Average error in approximation for KAMH with smaller
values of 𝑛 is shown in black. Results are for 250 independent runs with 5000 i.i.d. samples
used to learn covariances. Error bars represent 95% confidence intervals.

57

58

Appendix B

Software (R code)

B.1 KAMH algorithm

1 ## Description

2 # Implementation of the Kernel Adaptive Metropolis -Hastings (KAMH) algorithm proposed

3 # by Sejdinovic et al. 2014.

4 # [Reference: D. Sejdinovic , H. Strathmann , M.G. Lomeli , C. Andrieu , and A. Gretton.

5 # Kernel Adaptive Metropolis -Hastings. In International Conference on Machine Learning ,

6 # JMLR W&CP 32(2), pages 1665--1673, 2014.]

7 ## Arguments

8 # (i) target: function of the target pdf

9 # (ii) dimension: integer specifying the dimensionality of the target distribution

10 # (iii) X0: numerical vector specifying the initial state for the MCMC algorithm

11 # (iv) length.out: integer specifying output chain length , including the initial

12 # state taken from the random walk M-H algorithm. Note that , this is not

13 # necessarily the number of iterations , as this specifies chain length

14 # returned after accounting for thinning.

15 # (v) max.subchain.length: integer specifying the maximum length of the sampled

16 # subchain used during the adaptation step

17 # (vi) gam: initial value for the scaling parameter gamma , part of the proposal ’s

18 # covariance matrix

19 # (vii) nu: scaling parameter nu, part of the proposal ’s covariance matrix

20 # (viii) nu.adapt: function which takes iteration number as an argument and

21 # returns the value of a scaling parameter for adapting the nu parameter

22 # (ix) alpha: target acceptance rate used in adapting the nu parameter

23 # (x) adapt.prob: function which takes iteration number as an argument and

24 # returns numerical adaptation probability (requires that at the first

25 # iteration this probability is exactly equal to 1); if a single number is

26 # specified adaptation probability is 1 until you reach iteration equal to

27 # adapt.prob value and 0 otherwise; if a numeric vector is specified then

28 # adaptation probabilities are equal to 1 every adapt.prob[2]-th iteration

29 # unless iteration number exceeds adapt.prob[1], and 0 otherwise

30 # (xi) sample.discard: number of initial states to be discarded (length of the

59

31 # burn -in period)

32 # (xii) thin: integer setting the thinning interval used in simulation. Only the

33 # stored (thinned) points may be used for adaptation!

34 # (xiii) kern: list containing either a ’name ’ of a known kernel and ’par ’ with

35 # kernel parameters for known kernel functions (if applicable , see below);

36 # or ’fun ’ and ’dfun ’ containing functions for kernel and its derivative ,

37 # respectively. Currently supported inbuilt kernels:

38 # - "Gaussian ": includes one scaling parameter (sigma)

39 # (xiv) log.p: logical; if TRUE algorithm works with log -densities (requires target

40 # to be a log -pdf)

41 # (xv) method: string specifying the matrix decomposition used to determine the

42 # matrix root of sigma. Supported methods:

43 # - and Cholesky decomposition ("chol", default); typically fastest

44 # - eigenvalue decomposition ("eigen "); typically more stable

45 # - singular value decomposition ("svd")

46 # (xvi) verbose: numeric value adjusting verbosity of the function. Supported

47 # values:

48 # - 0: no additional output is printed

49 # - 1: a simple progress bar is printed

50 # - 2: indicator (+) if iteration point is stored , indicator if subsample

51 # has been updated (~), iteration number , current average acceptance

52 # ratio and nu parameter value , time elapsed are printed

53 # - 3: same as in 2, but additionally stores calculated proposal ’s

54 # covariance matrices

55 ## Output

56 # Following list object is returned:

57 # - $x: length.out by dimension matrix containing generated MCMC output chain

58 # - $accepted: vector containing the average acceptance ratio over all

59 # iterations (first element), and iterations that were stored

60 # (second element)

61 # - $burnin: sample.discard by dimension matrix containing the discarded

62 # random walk MH chain

63 # - $covMat: array containing stored proposal ’s covariance matrices [verbose

64 # needs to be set to 3]

65 mcmc_kamh <- function(target , dimension =2, X0=rep(0,dimension),

66 length.out =10000 , max.subchain.length =1000, gam=0.5,

67 nu=1, nu.adapt=function(t){ifelse(t<=1000 ,0 ,1/(t -1000))},

68 alpha =0.234 , adapt.prob =10000 , sample.discard =100, thin=1,

69 kern=list(name="Gaussian",par=1), log.p=TRUE ,

70 method=c("chol","eigen", "svd"), verbose =1){

71
72 ptm_startTime <- proc.time()

73
74 ### Initialisations and input checks

75 # Load mvtnorm for working with multivariate normal distributions

76 require(mvtnorm)

77 # Match target distribution

78 fun_pi <- match.fun(target)

79 # Set up properly adaptation probabilities function

60

80 if(!is.numeric(adapt.prob)){

81 fun_p <- match.fun(adapt.prob)

82 } else {

83 if(length(adapt.prob)==1){

84 fun_p <- function(t){

85 if(t<=adapt.prob){return (1)}

86 return (0)

87 }

88 } else {

89 if(adapt.prob [2]==1){

90 adapt.prob <- adapt.prob [1]

91 fun_p <- function(t){

92
93 if(t<=adapt.prob){return (1)}

94 return (0)}

95 } else {

96 fun_p <- function(t){

97 if(t<=adapt.prob [1]){

98 if(t%%adapt.prob [2]==1){return (1)}else{return (0)}

99 } else {return (0)}

100 }

101 }

102 }

103 }

104 if(fun_p(1)!=1){stop("Adaptation probability at the first iteration needs to be 1.")}

105 # Match function for adapting nu parameter

106 fun_nuAdaptScale <- match.fun(nu.adapt)

107 # Set up various variables

108 num_alphaStar <- alpha

109 if(num_alphaStar <0| num_alphaStar >1){stop(’Value of alpha needs to be between 0 and 1.’)}

110 num_d <- dimension

111 num_nMax <- max.subchain.length

112 if(num_nMax <1){Stop(’Value of max.subchain.length needs to be a positive integer.’)}

113 num_burnin <- sample.discard + 1

114 num_lengthOut <- length.out

115 num_thin <- thin

116 num_T <- num_lengthOut*num_thin + num_burnin

117 num_gamma <- gam

118 if(num_gamma ==0){stop(’Parameter gam cannot be zero.’)}

119 num_nu <- nu

120 num_nuSq <- num_nu*num_nu

121 mat_x <- matrix(NA, nrow=(num_burnin+num_lengthOut), ncol=num_d)

122 mat_x[1,] <- X0

123 num_gammaSq <- num_gamma*num_gamma

124 mat_gammaSqDiag <- num_gammaSq*diag(num_d)

125 num_accepted <- integer (1)

126 num_acceptedAndStored <- integer (1)

127 mat_z <- double(num_nMax) # Memory pre -allocation

128 lst_kern <- kern

61

129 lgc_acceptedFlag <- FALSE

130 lgc_xStoredFlag <- FALSE

131 lgc_xDiffersFlag <- TRUE

132 lgc_nMaxNotReachedFlag <- TRUE

133 # Verbose

134 lgc_progressBarFlag <- (verbose ==1)

135 lgc_classicVerboseFlag <- (verbose >=2)

136 lgc_saveCovMatFlag <- (verbose >=3)

137 if(lgc_progressBarFlag){fun_progressBar <- txtProgressBar (0, num_T, initial=0, style =3)}

138 if(lgc_saveCovMatFlag){

139 arr_proposalCovMat <- array(NA, c(num_d, num_d, num_lengthOut))

140 } else {

141 arr_proposalCovMat <- "Please set verbose = 3."

142 }

143
144 # Determine method for generating multivariate normals

145 if(num_d==1){

146 # 1D case

147 fun_dnorm <- function(x, mean , var){dnorm(x, mean , var*var , log=log.p)}

148 fun_rnorm <- function(n, mean , var){rnorm(n, mean , var*var)}

149 } else {

150 # 2D or higher case

151 fun_dnorm <- function(x, mean , sigmamat){dmvnorm(x, mean , sigmamat , log=log.p)}

152 fun_rnorm <- function(n, mean , sigmamat){rmvnorm(n, mean , sigmamat , method=method [1])}

153 }

154
155 ## Detect known kernels

156 if(lst_kern$name=="Gaussian"){

157 num_sigma <- lst_kern$par[1]

158 num_sigmaSq <- num_sigma*num_sigma

159 fun_k <- function(x,y){exp(-0.5*sum((x-y)^2)/(num_sigmaSq))}

160 fun_dk <- function(x,y){exp(-0.5*sum((x-y)^2)/(num_sigmaSq))*(y-x)/num_sigmaSq}

161 } else {

162 fun_k <- match.fun(lst_kern$fun)

163 fun_dk <- match.fun(lst_kern$dfun)

164 }

165
166 ### Burn -in period (plus one run , giving first z)

167 for(num_t in 1:(num_burnin)){

168
169 ## Proposal step

170 vec_xProposal <- fun_rnorm(1, mat_x[num_t,], mat_gammaSqDiag)

171
172 ## Accept/Reject

173 num_alpha <- ifelse(log.p==TRUE , fun_pi(vec_xProposal)-fun_pi(mat_x[num_t,]),

174 fun_pi(vec_xProposal)/fun_pi(mat_x[num_t,]))

175 if(ifelse(log.p==TRUE ,log(runif (1,0,1)),runif (1,0,1))<num_alpha){

176 # Accept

177 mat_x[num_t+1,] <- vec_xProposal

62

178 } else {

179 # Reject

180 mat_x[num_t+1,] <- mat_x[num_t,]

181 }

182
183 # Verbose

184 if(lgc_progressBarFlag){setTxtProgressBar(fun_progressBar ,num_t)}

185
186 }

187
188 ## Use the last point from burn -in phase as a first point in chain

189 vec_xCurrent <- mat_x[num_burnin +1,]

190 num_piAtCurrent <- fun_pi(vec_xCurrent)

191 # Verbose

192 if(lgc_classicVerboseFlag){

193 cat("+ ",sep="")

194 cat(num_t-num_burnin ,". ",sep="")

195 cat("(Initial step from random walk M-H burn -in phase.)")

196 cat("\n",sep="")

197 }

198
199 ### Run adaptive MCMC

200 if(num_lengthOut >1){for(num_t in (num_burnin +1):max((num_T-2*num_thin +1),num_burnin +1)){

201
202 ## Subsample update

203 if(runif (1,0,1)<fun_p(num_t-num_burnin)){

204 # Update subsample z

205 num_n <- min(ceiling ((num_t-num_burnin)/thin), num_nMax)

206 vec_zSampleIndices <- num_burnin + sample.int(ceiling ((num_t-num_burnin)/thin),

207 num_n, replace=FALSE)

208 mat_z <- mat_x[vec_zSampleIndices ,]

209 lgc_zUpdateFlag <- TRUE

210 }

211
212 ## Calculate proposal covariance matrix

213 if(num_n!=1){

214 if(num_d==1){

215 if(lgc_xDiffersFlag | lgc_zUpdateFlag){

216 mat_M <- matrix(sapply(mat_z, function(z){2*fun_dk(vec_xCurrent , z)}), nrow =1)

217 } # Optimisation: if x and z did not change do not recalculate M

218 } else {

219 if(lgc_xDiffersFlag | lgc_zUpdateFlag){

220 mat_M <- apply(mat_z, 1, function(z){2*fun_dk(vec_xCurrent , z)})

221 } # Optimisation: if x and z did not change do not recalculate M

222 }

223 } else {

224 mat_M <- matrix (2*fun_dk(vec_xCurrent , mat_z))

225 }

226

63

227 if(lgc_nMaxNotReachedFlag){

228 vec_ones <- rep(1,num_n)

229 if(num_n==num_nMax){lgc_nMaxNotReachedFlag <- FALSE}

230 } # Optimisation: if n does not change then do not recompute vector of ones

231 mat_covAdapt <- num_nuSq*mat_M%*%t(mat_M-((mat_M%*%(vec_ones/num_n))%*%t(vec_ones)))

232
233 ## Proposal step

234 mat_covProposal <- mat_gammaSqDiag + mat_covAdapt

235 vec_xProposal <- fun_rnorm(1, vec_xCurrent , mat_covProposal)

236 if(num_t==(num_burnin +1)){

237 mat_covPrevious <- mat_gammaSqDiag

238 }

239
240 ## Accept/Reject

241 num_qzxCurrent <- fun_dnorm(vec_xCurrent , vec_xProposal , mat_covPrevious)

242 num_qzxProposal <- fun_dnorm(vec_xProposal , vec_xCurrent , mat_covProposal)

243 num_piAtProposal <- fun_pi(vec_xProposal)

244 num_alpha <- ifelse(log.p==TRUE ,

245 num_piAtProposal -num_piAtCurrent+

246 num_qzxCurrent -num_qzxProposal ,

247 (num_piAtProposal/num_piAtCurrent)*

248 (num_qzxCurrent/num_qzxProposal))

249 if(ifelse(log.p==TRUE , log(runif (1,0,1)), runif (1,0,1)) < num_alpha){

250 # Accept

251 mat_covPrevious <- mat_covProposal

252 vec_xCurrent <- as.numeric(vec_xProposal)

253 num_piAtCurrent <- num_piAtProposal

254 num_accepted <- num_accepted + 1

255 lgc_acceptedFlag <- TRUE

256 lgc_xDiffersFlag <- TRUE

257 } else {

258 # Do nothing for rejection - nothing changes from the previous iteration

259 lgc_xDiffersFlag <- FALSE

260 }

261
262 # Store the point

263 if(((num_t-num_burnin)%%num_thin ==1) | (num_thin ==1)){

264 mat_x[ceiling ((num_t-num_burnin)/thin)+num_burnin +1,] <- vec_xCurrent

265 if(lgc_saveCovMatFlag){

266 arr_proposalCovMat [,,(ceiling ((num_t-num_burnin)/thin))] <- mat_covProposal

267 }

268 lgc_xStoredFlag <- TRUE

269 if(lgc_acceptedFlag){

270 num_acceptedAndStored <- num_acceptedAndStored + 1

271 }

272 }

273
274 ## Adapt nu

275 num_nuAdaptScale <- fun_nuAdaptScale(num_t+1-num_burnin)

64

276 num_nu <- exp(log(num_nu)+num_nuAdaptScale*(ifelse(lgc_acceptedFlag ,1,0)-num_alphaStar)

)

277 num_nuSq <- num_nu*num_nu

278
279 ## Verbose

280 if(lgc_progressBarFlag){setTxtProgressBar(fun_progressBar ,num_t)}

281 if(lgc_classicVerboseFlag){

282 if(lgc_xStoredFlag){cat("+",sep="")}else{cat(" ",sep="")}

283 if(lgc_zUpdateFlag){cat("~ ",sep="")}else{cat(" ",sep="")}

284 cat(num_t-num_burnin ,". ",sep="")

285 cat("Acceptance ratio: ",format(round(num_accepted/(num_t-num_burnin)*100,2),

286 nsmall =2),"% @ nu = ",

287 format(round(num_nu ,3),nsmall =3),". ",sep="")

288 ptm_runTime <- proc.time()[1]-ptm_startTime [1]

289 ptm_estTime <- round(ptm_runTime/(num_t-num_burnin)*(num_T-num_burnin))

290 cat("[Time: ",format(round(ptm_runTime ,0),nsmall =0)," s]",sep="")

291 cat("\n",sep="")

292 }

293
294 # Clean up flags

295 lgc_zUpdateFlag <- FALSE

296 lgc_acceptedFlag <- FALSE

297 lgc_xStoredFlag <- FALSE

298
299 }}#end adaptive mcmc

300
301 # Verbose

302 if(lgc_progressBarFlag){

303 close(fun_progressBar)

304 ptm_runTime <- proc.time()[1]-ptm_startTime [1]

305 cat("Done in ",ptm_runTime ," s.\n",sep="")

306 }

307
308 ### Return results in a list

309 return(list(x=mat_x[(num_burnin +1):(num_burnin+num_lengthOut),],

310 accepted=c(num_accepted , num_acceptedAndStored),

311 burnin=mat_x[1:num_burnin], covMat=arr_proposalCovMat))

312
313 }

B.2 F-KAMH algorithm

1 ## Description

2 # Fast Kernel Adaptive Metropolis -Hastings (F-KAMH) algorithm that uses random Fourier

3 # features framework to significantly improve the cost of computations by dropping

4 # the dependency of calculations on the subsample size (c.f. KAMH algorithm).

5 ## Arguments

65

6 # (i) target: function of the target pdf

7 # (ii) dimension: integer specifying the dimensionality of the target distribution

8 # (iii) X0: numerical vector specifying the initial state for the MCMC algorithm

9 # (iv) length.out: integer specifying output chain length , including the initial

10 # state taken from the last point in the random walk M-H algorithm. Note that ,

11 # this is not necessarily the number of iterations , as this specifies chain

12 # length returned after accounting for thinning.

13 # (v) gam: scaling parameter gamma , part of the proposal ’s covariance matrix

14 # (vi) eta: scaling parameter eta , part of the proposal ’s covariance matrix

15 # (vii) eta.adapt: function which takes iteration number as an argument and

16 # returns the value of a scaling parameter for adapting the eta parameter

17 # (viii) alpha: target acceptance rate used in adapting the eta parameter

18 # (ix) sample.discard: number of initial states to be discarded (length of the

19 # burn -in period)

20 # (x) rff.samples: number of random Fourier features (dimension D). Has to be

21 # even when working with embedding = 1.

22 # (xi) thin: integer setting the thinning interval used in simulation. Only the

23 # stored (thinned) points may be used for adaptation!

24 # (xii) kern: list containing either a ’name ’ of a known kernel , or ’fname ’

25 # containing name of a known Fourier transform of the kernel , and ’par ’ with

26 # kernel parameters for known kernel functions (if applicable , see below);

27 # or ’fun ’ and ’ffun ’ containing functions for kernel and function

28 # allowing to generate i.i.d. samples from its Fourier transform ,

29 # respectively. Currently supported inbuilt kernels:

30 # - [name] "Gaussian ": includes one scaling parameter (sigma)

31 # - [fname] "Gaussian: includes one scaling parameter (sigma)

32 # (xiii) log.p: logical; if TRUE algorithm works with log -densities (requires target

33 # to be a log -pdf)

34 # (xiv) method: string specifying the matrix decomposition used to determine the

35 # matrix root of sigma. Supported methods:

36 # - and Cholesky decomposition ("chol", default); typically fastest

37 # - eigenvalue decomposition ("eigen "); typically more stable

38 # - singular value decomposition ("svd")

39 # (xv) embedding: numerical value specifying which embedding is used. Supported

40 # values:

41 # - 1: sine , cosine representation

42 # - 2: cosine with added uniform noise b representation

43 # (xvi) verbose: numeric value adjusting verbosity of the function. Supported

44 # values:

45 # - 0: no additional output is printed

46 # - 1: a simple progress bar is printed

47 # - 2: indicator (+) if iteration point is stored , iteration number

48 # current average acceptance ratio and eta parameter value , time

49 # elapsed and estimated total time required are printed

50 # - 3: same as in 2, but additionally stores calculated proposal ’s

51 # covariance matrices

52 ## Output

53 # Following list object is returned:

54 # - $x: length.out by dimension matrix containing generated MCMC output chain

66

55 # - $accepted: vector containing the average acceptance ratio over all

56 # iterations (first element), and iterations that were stored

57 # (second element)

58 # - $burnin: sample.discard by dimension matrix containing the discarded

59 # random walk MH chain

60 # - $covMat: array containing stored proposal ’s covariance matrices [verbose

61 # needs to be set to 3]

62 mcmc_fkamh <- function(target , dimension=2, X0=rep(0,dimension),

63 length.out =10000 , gam=0.5, eta=1,

64 eta.adapt=function(t){ifelse(t<=1000 ,0 ,1/(t -1000))},

65 alpha =0.234 , sample.discard =100, rff.samples =400,

66 thin=1, kern=list(name="Gaussian",par=1),

67 log.p=TRUE , method=c("chol","eigen", "svd"),

68 embedding=1, verbose =1){

69
70 ptm_startTime <- proc.time()

71
72 ### Initialisations and input checks

73 # Load mvtnorm for working with multivariate normal distributions

74 require(mvtnorm)

75 # Match target distribution

76 fun_pi <- match.fun(target)

77 # Match function for adapting nu parameter

78 fun_etaAdaptScale <- match.fun(eta.adapt)

79 # Set up various variables

80 num_alphaStar <- alpha

81 num_embedding <- embedding

82 num_d <- dimension

83 num_D <- rff.samples

84 if(num_embedding & num_D%%2){

85 num_D <- (num_D+1)

86 warning(paste("Using embedding ’1’ requires even number of rff.samples; ",

87 "setting dimension D to ",num_D,".",sep=""))

88 }

89 num_burnin <- sample.discard + 1

90 num_lengthOut <- length.out

91 num_thin <- thin

92 num_T <- num_lengthOut*num_thin + num_burnin

93 num_gamma <- gam

94 if(num_gamma ==0){stop(’Parameter gam cannot be zero.’)}

95 num_eta <- eta

96 num_etaSq <- num_eta*num_eta

97 mat_x <- matrix(NA, nrow=(num_burnin+num_lengthOut), ncol=num_d)

98 mat_x[1,] <- X0

99 num_gammaSq <- num_gamma*num_gamma

100 mat_gammaSqDiag <- num_gammaSq*diag(num_d)

101 num_accepted <- integer (1)

102 num_acceptedAndStored <- integer (1)

103 lst_kern <- kern

67

104 lgc_acceptedFlag <- FALSE

105 lgc_xStoredFlag <- FALSE

106 lgc_kernNotDetectedFlag <- TRUE

107 # Verbose

108 lgc_progressBarFlag <- (verbose ==1)

109 lgc_classicVerboseFlag <- (verbose >=2)

110 lgc_saveCovMatFlag <- (verbose >=3)

111 if(lgc_progressBarFlag){fun_progressBar <- txtProgressBar (0, num_T, initial=0, style =3)}

112 if(lgc_saveCovMatFlag){

113 arr_proposalCovMat <- array(NA, c(num_d, num_d, num_lengthOut))

114 } else {

115 arr_proposalCovMat <- "Please set verbose = 3."

116 }

117
118 # Determine method for generating multivariate normals

119 if(num_d==1){

120 # 1D case

121 fun_dnorm <- function(x, mean , var){dnorm(x, mean , var*var , log=log.p)}

122 fun_rnorm <- function(n, mean , var){rnorm(n, mean , var*var)}

123 } else {

124 # 2D or higher case

125 fun_dnorm <- function(x, mean , sigmamat){dmvnorm(x, mean , sigmamat , log=log.p)}

126 fun_rnorm <- function(n, mean , sigmamat){rmvnorm(n, mean , sigmamat , method=method [1])}

127 }

128
129 ## Set functions in relation to the kernel

130 if(!is.null(lst_kern$name)){

131 # Kernel name specified; try to load known kernels

132 if(lst_kern$name=="Gaussian"){

133 num_sigma <- lst_kern$par[1]

134 num_sigmaSq <- num_sigma*num_sigma

135 fun_romega <- function (){fun_rnorm(1, rep(0,num_d), diag(num_d)/num_sigmaSq)}

136 lgc_kernNotDetectedFlag <- FALSE

137 } else {

138 warning("Input kern$name not supported.")

139 }

140 } else if(lgc_kernNotDetectedFlag & (!is.null(flg_kern$fname))){

141 # Fourier transform of kernel name specified; try to load known kernels

142 if(lst_kern$fname=="Gaussian"){

143 fun_romega <- function (){fun_rnorm(1, rep(0,num_d), diag(num_d)/lst_kern$par [1])}

144 lgc_kernNotDetectedFlag <- FALSE

145 } else {

146 warning("Input kern$fname not supported.")

147 }

148 } else if(lgc_kernNotDetectedFlag) {

149 fun_k <- match.fun(lst_kern$fun)

150 fun_romega <- match.fun(lst_kern$ffun)

151 } else {

152 stop("Failed to determine the kernel function.")

68

153 }

154
155 ### Sample omega ’s

156 mat_omegaTranspose <- apply(matrix(NA,ifelse(num_embedding ==1,num_D/2,num_D) ,1), 1,

157 function(x){fun_romega ()})

158 if(num_d==1){

159 mat_omegaTranspose <- matrix(mat_omegaTranspose , nrow =1)

160 }

161 mat_omega <- t(mat_omegaTranspose)

162
163 ### Choose appropriate embedding

164 if(num_embedding ==1){

165 fun_phi <- function(vec_x){

166 sqrt(2/num_D) * matrix(t(cbind(sin(crossprod(mat_omegaTranspose ,vec_x)),

167 cos(crossprod(mat_omegaTranspose ,vec_x)))), ncol = 1)

168 }

169 } else if(num_embedding ==2){

170 vec_b <- runif(num_D,0,2*pi)

171 fun_phi <- function(vec_x){sqrt(2/num_D)*cos(crossprod(mat_omegaTranspose ,vec_x)+vec_b)

}

172 } else {

173 stop("Choice of embedding not supported.")

174 }

175
176 ### Burn -in period (plus one run , giving first z)

177 for(num_t in 1:(num_burnin)){

178
179 ## Proposal step

180 vec_xProposal <- fun_rnorm(1, mat_x[num_t,], mat_gammaSqDiag)

181
182 ## Accept/Reject

183 num_alpha <- ifelse(log.p==TRUE , fun_pi(vec_xProposal)-fun_pi(mat_x[num_t,]),

184 fun_pi(vec_xProposal)/fun_pi(mat_x[num_t,]))

185 if(ifelse(log.p==TRUE ,log(runif (1,0,1)),runif (1,0,1))<num_alpha){

186 # Accept

187 mat_x[num_t+1,] <- vec_xProposal

188 } else {

189 # Reject

190 mat_x[num_t+1,] <- mat_x[num_t,]

191 }

192
193 # Verbose

194 if(lgc_progressBarFlag){setTxtProgressBar(fun_progressBar ,num_t)}

195
196 }

197
198 ## Use the last point from burn -in phase as a first point in chain

199 vec_xCurrent <- mat_x[num_burnin +1,]

200 num_piAtCurrent <- fun_pi(vec_xCurrent)

69

201 # Verbose

202 if(lgc_classicVerboseFlag){

203 cat("+ ",sep="")

204 cat(num_t-num_burnin ,". ",sep="")

205 cat("(Initial step from random walk M-H burn -in phase.)")

206 cat("\n",sep="")

207 }

208
209 ### Run adaptive MCMC

210 if(num_lengthOut >1){for(num_t in (num_burnin +1):max((num_T-2*num_thin +1),num_burnin +1)){

211
212 ## Get embedding of current point x, vec_phiXCurrent

213 vec_phiXCurrent <- fun_phi(vec_xCurrent)

214
215 ## Calculate matrix of partial derivatives of phi , mat_pphi

216 if(num_embedding ==1){

217 mat_pphi <- sqrt(2/num_D)*matrix(t(

218 cbind(sweep(mat_omega ,MARGIN=1,cos(rowSums(sweep(mat_omega ,MARGIN=2,

219 vec_xCurrent ,"*"))), "*"),

220 -sweep(mat_omega ,MARGIN=1,sin(rowSums(sweep(mat_omega ,MARGIN=2,

221 vec_xCurrent ,"*"))), "*")

222)

223), ncol=num_D, byrow=FALSE)

224 } else {

225 mat_pphi <- -sqrt(2/num_D)*sweep(mat_omega ,

226 MARGIN=1,

227 sin(rowSums(sweep(mat_omega ,MARGIN=2,

228 vec_xCurrent ,"*")) + vec_b), "*")

229 }

230
231 ## Calculate matrix C using rank -one update

232 if(num_t==(num_burnin +1)){

233 vec_muCurrent <- vec_phiXCurrent

234 mat_M <- matrix(0, num_D, num_D)

235 mat_C <- matrix(0, num_D, num_D)

236 mat_covPrevious <- mat_gammaSqDiag

237 } else {

238 vec_muPrevious <- vec_muCurrent

239 vec_muCurrent <- ((num_t-num_burnin)/((num_t-num_burnin)+1))*vec_muPrevious +

240 vec_phiXCurrent/((num_t-num_burnin)+1)

241 mat_M <- mat_M + (vec_phiXCurrent - vec_muPrevious) %*% t(vec_phiXCurrent -

242 vec_muCurrent)

243 mat_C <- mat_M/((num_t-num_burnin)+1)

244 }

245
246 ## Proposal step

247 if(num_embedding ==1){

248 mat_covAdapt <- num_etaSq*mat_pphi%*%mat_C%*%t(mat_pphi)

249 } else {

70

250 mat_covAdapt <- num_etaSq*t(mat_pphi)%*%mat_C%*%mat_pphi

251 }

252 mat_covProposal <- mat_gammaSqDiag + mat_covAdapt

253 vec_xProposal <- fun_rnorm(1, vec_xCurrent , mat_covProposal)

254
255 ## Accept/Reject

256 num_qzxCurrent <- fun_dnorm(vec_xCurrent , vec_xProposal , mat_covPrevious)

257 num_qzxProposal <- fun_dnorm(vec_xProposal , vec_xCurrent , mat_covProposal)

258 num_piAtProposal <- fun_pi(vec_xProposal)

259 num_alpha <- ifelse(log.p==TRUE ,

260 num_piAtProposal -num_piAtCurrent+

261 num_qzxCurrent -num_qzxProposal ,

262 (num_piAtProposal/num_piAtCurrent)*

263 (num_qzxCurrent/num_qzxProposal))

264 if(ifelse(log.p==TRUE , log(runif (1,0,1)), runif (1,0,1)) < num_alpha){

265 # Accept

266 mat_covPrevious <- mat_covProposal

267 vec_xCurrent <- as.numeric(vec_xProposal)

268 num_piAtCurrent <- num_piAtProposal

269 num_accepted <- num_accepted + 1

270 lgc_acceptedFlag <- TRUE

271 }

272 # Do nothing for rejection - nothing changes from the previous iteration

273
274 # Store the point

275 if(((num_t-num_burnin)%%num_thin ==1) | (num_thin ==1)){

276 mat_x[ceiling ((num_t-num_burnin)/thin)+num_burnin +1,] <- vec_xCurrent

277 if(lgc_saveCovMatFlag){

278 arr_proposalCovMat[,,(ceiling ((num_t-num_burnin)/thin))] <- mat_covProposal

279 }

280 lgc_xStoredFlag <- TRUE

281 if(lgc_acceptedFlag){

282 num_acceptedAndStored <- num_acceptedAndStored + 1

283 }

284 }

285
286 ## Adapt eta

287 num_etaAdaptScale <- fun_etaAdaptScale(num_t+1-num_burnin)

288 num_eta <- exp(log(num_eta)+num_etaAdaptScale*(ifelse(lgc_acceptedFlag ,1,0)-

289 num_alphaStar))

290 num_etaSq <- num_eta*num_eta

291
292 ## Verbose

293 if(lgc_progressBarFlag){setTxtProgressBar(fun_progressBar ,num_t)}

294 if(lgc_classicVerboseFlag){

295 if(lgc_xStoredFlag){cat("+ ",sep="")}else{cat(" ",sep="")}

296 cat(num_t-num_burnin ,". ",sep="")

297 cat("Acceptance ratio: ",format(round(num_accepted/(num_t-num_burnin)*100,2),

298 nsmall =2),"% @ eta = ",

71

299 format(round(num_eta ,3),nsmall =3),". ",sep="")

300 ptm_runTime <- proc.time()[1]-ptm_startTime [1]

301 ptm_estTime <- round(ptm_runTime/(num_t-num_burnin)*(num_T-num_burnin))

302 cat("[Time: ",format(round(ptm_runTime ,0),nsmall =0)," / ",

303 format(round(ptm_estTime ,0),nsmall =0)," s]",sep="")

304 cat("\n",sep="")

305 }

306
307 # Clean up flags

308 lgc_acceptedFlag <- FALSE

309 lgc_xStoredFlag <- FALSE

310
311 }}#end adaptive mcmc

312
313 # Verbose

314 if(lgc_progressBarFlag){

315 close(fun_progressBar)

316 ptm_runTime <- proc.time()[1]-ptm_startTime [1]

317 cat("Done in ",ptm_runTime ," s.\n",sep="")

318 }

319
320 ### Return results in a list

321 return(list(x=mat_x[(num_burnin +1):(num_burnin+num_lengthOut),],

322 accepted=c(num_accepted , num_acceptedAndStored),

323 burnin=mat_x[1:num_burnin], covMat=arr_proposalCovMat))

324
325 }

B.3 Miscellaneous

Additional functions used for conducting the experiments.

1 ### ’Banana ’-shaped probability distribution function

2 dbanana <- function(x, b=0.1, v=100, log.p=TRUE){

3 d <- length(x)

4 x1 <- dnorm(x[1]/sqrt(v), 0, 1)

5 x2 <- dnorm(x[2], b*(x[1]^2 -v) ,1)

6 x3 <- 1

7 if(d>2){for(i in 1:(d-2)){x3 <- x3*dnorm(x[i+2], 0, 1)}}

8 return(ifelse(log.p, log(x1*x2*x3), x1*x2*x3))

9 }

10
11 ### Function plotting density heat map and super -imposing MCMC samples

12 plot_density_heatmap <- function(density , mcmc_kamh , mcmc_scope=NULL ,

13 x1 = seq(-20,20, length.out =400),

14 x2 = seq(-15,25, length.out =400),

15 run.all=FALSE , ...){

72

16
17 if(!exists("x_density") | run.all){

18 x_grid <- expand.grid(x1,x2)

19 x_density <<- matrix(apply(x_grid ,1,density , ...),nrow=length(x1))

20 }

21
22 if(!is.null(mcmc_kamh)){if(is.null(mcmc_scope)){mcmc_scope <- seq(1,dim(mcmc_kamh$x)

[1] ,1)}}

23
24 require(’plot3D ’)

25 require(’scales ’)

26 image2D(x_density ,x1,x2,rasterImage=T,xlab=expression(’x’[1]),ylab=expression(’x’[2]))

27 if(!is.null(mcmc_kamh)){

28 mcmc_pts <- mcmc_kamh$x[mcmc_scope ,]

29 mcmc_pts <- mcmc_pts[which(mcmc_pts[,1]<(x1[length(x1)])) ,]

30 mcmc_pts <- mcmc_pts[which(mcmc_pts[,2]<(x2[length(x2)])) ,]

31 points(mcmc_pts , pch=20, cex =0.39, col=alpha("white", 0.6))

32 points(mcmc_pts , pch=21, cex =0.39, col=alpha("black", 0.9))

33 }

34 }

35
36 ### Function plotting ellipse from a covariance matrix

37 plot_covMat2Ellipse <- function(covMat , ellipse.centre , scale=qchisq (.95 ,2), col="white"){

38 require(’scales ’)

39
40 lst_eigen <- eigen(covMat , symmetric=TRUE)

41 vec_evals <- lst_eigen$values

42 mat_evecs <- lst_eigen$vectors

43 vec_t <- seq(0,2*pi,length.out =200)

44
45 mat_ellipse <- scale * cbind(cos(vec_t), sin(vec_t)) %*% chol(covMat)

46 mat_ellipseCentred <- sweep(mat_ellipse , 2, ellipse.centre , "+")

47
48 points(mat_ellipseCentred , type="l", lwd=4, asp=1, col="black")

49 points(mat_ellipseCentred , type="l", lwd=2, asp=1, col=col)

50 points(ellipse.centre [1], ellipse.centre [2], pch=20, col=alpha("red" ,0.5), cex =0.8)

51 points(ellipse.centre [1], ellipse.centre [2], pch=21, col="black", cex =0.8)

52 }

53
54 ### Function plotting covariance matrices on a heat map

55 plot_points2CovMat <- function(scale =0.387 , n=10, z=kamh_samples$x, force.new=FALSE ,

56 algorithm=c("kamh","fkamh"), omega , gam=2.1, eta=2.1,

57 nu=2.1, sigma=1, b, embedding=1, rff.samples , verbose=1,

58 col="white"){

59 if(!exists("points2CovMat_pts") | force.new){

60 cat("Select",n,"points on the plot with left -click of the mouse; or press [esc]",

61 "to end selecting the points right away.\n")

62 points2CovMat_pts <- locator(n)

63 points2CovMat_pts <<- points2CovMat_pts

73

64 }

65 points2CovMat_pts <- cbind(points2CovMat_pts[[1]], points2CovMat_pts [[2]])

66 for(i in 1:(dim(points2CovMat_pts)[1])){

67 centrePt <- points2CovMat_pts[i,]

68 if(algorithm =="kamh"){

69 covMat <- kamh_covMat(centrePt , z, gam=gam , nu=nu , sigma=sigma)

70 } else if(algorithm [1]=="fkamh"){

71 covMat <- fkamh_covMat(centrePt , z=z, omega=omega , gam=gam , eta=eta , b=b,

72 embedding=embedding , rff.samples=rff.samples)

73 } else {

74 stop("Unsupported algorithm.")

75 }

76 if(verbose >1){print(covMat)}

77 plot_covMat2Ellipse(covMat , centrePt , scale , col=col)

78 }

79 }

80
81
82 ### I.i.d. sampler from banana target

83 rbanana <- function(n, d=2, b=0.1, v=100){

84 z <- matrix(NA , n, d)

85 for(i in 1:n){

86 x1 <- rnorm(1, 0, sqrt(v))

87 x <- rnorm(d-1)

88 y1 <- x1

89 y2 <- x[1]+b*(x1*x1-v)

90 if(d>2){y <- x[2:(d-1)]}else{y <- NULL}

91 z[i,] <-c(y1,y2 ,y)

92 }

93 z

94 }

95
96 ### Function calculating 2x2 covariance matrix for the KAMH proposal (2D case)

97 kamh_covMat <- function(x, z, gam=2.1, nu=2.1, sigma=1, d=2){

98 vec_xCurrent <- x

99 mat_z <- z

100 num_d <- d

101 num_n <- dim(z)[1]

102 num_gamma <- gam

103 num_gammaSq <- num_gamma^2

104 mat_gammaSqDiag <- num_gammaSq*diag(num_d)

105 num_sigmaSq <- sigma^2

106 num_nuSq <- nu*nu

107 fun_k <- function(x,y){exp(-0.5*sum((x-y)^2)/(num_sigmaSq))}

108 fun_dk <- function(x,y){exp(-0.5*sum((x-y)^2)/(num_sigmaSq))*(y-x)/num_sigmaSq}

109 ## Calculate H, M(z, x_t) matrices

110 if(num_n!=1){

111 if(num_d==1){

112 mat_M <- sapply(mat_z, function(z){2*fun_dk(vec_xCurrent , z)})

74

113 mat_M <- t(mat_M)

114 } else {

115 mat_M <- apply(mat_z, 1, function(z){2*fun_dk(vec_xCurrent , z)})

116 }

117 } else {

118 mat_M <- 2*fun_dk(vec_xCurrent , mat_z)

119 }

120
121 vec_ones <- rep(1,num_n)

122 mat_covAdapt <- num_nuSq*mat_M%*%t(mat_M-((mat_M%*%(vec_ones/num_n))%*%t(vec_ones)))

123
124 ## Return covariance

125 mat_covProposal <- mat_gammaSqDiag + mat_covAdapt

126 return(mat_covProposal)

127 }

128
129 ### Function generating matrix omega using Gaussian kernel , part of F-KAMH

130 gen_omega_Gaussian <- function(rff.samples , sigma=1, embedding =1, d=2){

131 num_embedding <- embedding

132 num_D <- rff.samples

133 num_d <- d

134 num_sigma <- sigma

135 num_sigmaSq <- num_sigma*num_sigma

136 if(num_embedding & num_D%%2){

137 num_D <- (num_D+1)

138 warning(paste("Using embedding ’1’ requires even number of rff.samples; ",

139 "setting dimension D to ",num_D,".",sep=""))

140 }

141 if(num_d==1){

142 # 1D case

143 fun_rnorm <- function(n, mean , var){rnorm(n, mean , var*var)}

144 } else {

145 # 2D or higher case

146 fun_rnorm <- function(n, mean , sigmamat){rmvnorm(n, mean , sigmamat)}

147 }

148 fun_romega <- function (){fun_rnorm(1, rep(0,num_d), diag(d)/num_sigmaSq)}

149 mat_omegaTranspose <- apply(matrix(NA,ifelse(num_embedding ==1,num_D/2,num_D) ,1), 1,

150 function(x){fun_romega ()})

151 mat_omega <- t(mat_omegaTranspose)

152 return(mat_omega)

153 }

154
155 ### Function calculating 2x2 covariance matrix for the F-KAMH proposal (2D case)

156 fkamh_covMat <- function(x, z, omega , gam=2.1, eta=2.1, b, embedding=1, rff.samples , d=2){

157 # Initialisation

158 vec_xCurrent <- x

159 mat_z <- z

160 num_d <- d

161 num_D <- rff.samples

75

162 num_gamma <- gam

163 num_gammaSq <- num_gamma^2

164 mat_gammaSqDiag <- num_gammaSq*diag(num_d)

165 num_etaSq <- eta*eta

166 mat_omega <- omega

167 mat_omegaTranspose <- t(mat_omega)

168 num_embedding <- embedding

169 vec_b <- b

170 # Embedding

171 if(num_embedding ==1){

172 if((num_D%%2)==1){stop(’Dimension D needs to be even for embedding =1.’)}

173 fun_phi <- function(vec_x){

174 sqrt(2/num_D) * matrix(t(cbind(sin(crossprod(mat_omegaTranspose ,vec_x)),

175 cos(crossprod(mat_omegaTranspose ,vec_x)))), ncol = 1)

176 }

177 } else if(num_embedding ==2){

178 fun_phi <- function(vec_x){sqrt(2/num_D)*cos(crossprod(mat_omegaTranspose ,vec_x)+vec_b)

}

179 } else {

180 stop("Choice of embedding not supported.")

181 }

182 # Calculate covariance

183 vec_phiXCurrent <- fun_phi(vec_xCurrent)

184
185 ## Calculate matrix of partial derivatives of phi , mat_pphi

186 if(num_embedding ==1){

187 mat_pphi <- sqrt(2/num_D)*matrix(t(

188 cbind(sweep(mat_omega ,MARGIN=1,cos(rowSums(sweep(mat_omega ,MARGIN=2,

189 vec_xCurrent ,"*"))), "*"),

190 -sweep(mat_omega ,MARGIN=1,sin(rowSums(sweep(mat_omega ,MARGIN=2,

191 vec_xCurrent ,"*"))), "*")

192)

193), ncol=num_D, byrow=FALSE)

194 } else {

195 mat_pphi <- -sqrt(2/num_D)*sweep(mat_omega ,

196 MARGIN=1,

197 sin(rowSums(sweep(mat_omega ,MARGIN=2,

198 vec_xCurrent ,"*")) + vec_b), "*")

199 }

200 ## Calculate matrix C

201 mat_zPhiTranspose <- apply(mat_z, 1, fun_phi)

202 vec_mu <- apply(mat_zPhiTranspose , 1, sum)/(dim(mat_zPhiTranspose)[2])

203 mat_C <- matrix(0, num_D, num_D)

204 for(num_i in 1:dim(mat_zPhiTranspose)[2]){

205 mat_C <- mat_C + mat_zPhiTranspose[,num_i]%*%t(mat_zPhiTranspose[,num_i])

206 }

207 mat_C <- mat_C/(dim(mat_zPhiTranspose)[2])-vec_mu%*%t(vec_mu)

208 if(num_embedding ==1){

209 mat_covAdapt <- num_etaSq*(mat_pphi%*%mat_C%*%t(mat_pphi))

76

210 } else {

211 mat_covAdapt <- num_etaSq*t(mat_pphi)%*%mat_C%*%mat_pphi

212 }

213 mat_covProposal <- mat_gammaSqDiag + mat_covAdapt

214 return(mat_covProposal)

215 }

77

