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Abstract

This projects aims to present significant results of random matrix theory in regards to the principal

component analysis, including Wigner’s semicircular law and Marčenko-Pastur law describing lim-

iting distribution of large dimensional random matrices. The work bases on the large dimensional

data assumptions, where both the number of variables and sample size tends to infinity, while their

ratio tends to a finite limit.

Random matrix theory, over the past decade has been a fast growing area of mathematics, due

to the advancements in technology and data collection methods. Treated as a tool to solve large

dimensional problems, it has found its application in many research areas, such as signal processing,

network security, image processing, genetic statistics, stock market analysis, and other finance or

economic problems [1, p. 3].

In this project, key results enabling to establish a low dimensional factor model form a large

noisy data will be stated, as well as a general way of proving them will be given. A significant portion

of the proofs relies on the Stieltjes transform, a common tool used for studying the convergence

of spectral distribution of large matrice, which is also discussed in this project. An algorithm

suggested by Karoui [14] will be presented, giving a method of estimating the true population

covariance method.

Empirical verification of main theorems is conducted, showing fast convergence rate in case

of the Marčenko-Pastur law, and slower rate for the Wigner’s semicircular law. Also, the estab-

lished theory is applied to a real-life financial data, based on the S&P 500 index, for which 12

principal components have been identified when time horizon is equal to 10 years, and 10 principal

components for data set over 5 years.
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B.3 Empirical Verification of Marčenko-Pastur Results . . . . . . . . . . . . . . . . . . . . 40
B.4 Study of Financial Stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



1 Introduction

1 Introduction

For over 50 years the statistical properties of financial data sets have been extensively researched.
However, only during the recent decade has it been possible to apply computer-intensive methods
to analyse large data sets and seek for correlation between stock prices [5, p. 223]. It is currently
a challenge to extract meaningful information from a principal component analysis done on highly
dimensional data. The key interest of this project will be the eigenvalues of covariance matrices,
which allow a low-dimensional approximation to the data to be obtained through a projection on the
lower-dimensional subspace, in order to explain as much variance in the given data set as possible [14,
p. 2758].

The underlying problem comes from the fact that today’s statistics bases on data sets for which
not only the sample size (represented by time index T , say) is large, but also the number of variables n
is regarded as large. In this case the commonly used estimators, proven under the implicit assumption
of asymptotic framework in which n is fixed, while T tends to infinity, are no longer justified [14, p.
2757]. In this project, the assumption of large T , large n is explored, where it will be assumed that
the growth rate of both dimensions tends to a finite limit, so in other words, asymptotically, the ratio
y := n/T is constant. The key reason for the occurrence of the observed shift in the paradigm of
statistical assumption, from the one where the number of variables n is fixed to the one in which n
tends to infinity, is perhaps due to the significant advancement, over the past three or four decades,
of computer science. Availability of data has rapidly increased, as well as technological limitations in
regards to computational speeds and storage have been lifted. This change has given motivation for
statisticians to develop new theory in regards to highly-dimensional datasets.

It has to be noted that in practice, however, there is some ambiguity regarding the choice of the
setup, which determines whether classical limit theorems (for fixed n) are used or if large dimensional
limit theorems (when n → ∞) are applicable. For example, in some applications a sample size of
T = 100 can be argued to be large enough to assume that T → ∞, but it is not always clear
whether the corresponding n = 20 variables should also be treated as n tending to infinity or as a
fixed quantity in this case. For example, as argued by Huber [10], it is beneficial to study the case of
increasing dimension together with the sample size in linear regression analysis. However, this problem
should not be the focus of this project, in which the assumption of large T , large n is adopted.

Random matrix theory (RMT) has been developed as a tool providing special limiting theorems
to deal with (practical) problems, in which classical limiting theorems fail. An example highlighting
the case in which the classical limiting theorems are not suitable for use with high dimensional data
is given in section 2.1. As random matrix theory has been useful in providing ways of dealing with
large dimensional data analysis, it has been found in applications in many research areas, such as
signal processing, network security, image processing, genetic statistics, stock market analysis, and
other finance or economic problems [1, p. 3].

In this project a strong focus is being placed on the spectral distribution of large dimensional
square matrices, studying key results such as the Wigner’s Circular Law, sample covariance matrices,
and the Marčenko-Pastur Law. A key tool in establishing these results will be the Stieltjes transform,
discussed in section 1.3. Moreover, empirical verification of some of the results will be presented, as
well as further extension of the results (such as the possibility of extracting information concerning
the true population covariance matrix) will be suggested. The motivation for this project bases on the
practical study conducted on the S&P 500 index. Such approach will allow to link the random matrix
theory to the stock market analysis, displaying powerful tools, which can be used by statisticians to
extract meaningful information regarding the markets, stock indices and, in general, the economy, i.e.
will allow for extraction of a low dimensional factor model from large and noisy dataset.
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1 Introduction

1.1 Structure of the Document

The document will be structured as follows:

• Section 1: Introduction and motivation of the study; preliminary definitions and theorems; and
a discussion on Stieltjes transform – a key tool for establishing the further results in this project.

• Section 2: Theoretical discussion on spectral analysis of high dimensional random matrices,
in which main results regarding the distribution of the eigenvalues of large matrices will be
presented. The main application relates to the sample covariance matrices of highly dimensional
datasets, with key theorems being the Wigner’s semicircular law, and the Marčenko-Pastur law.

• Section 3: Empirical verification and discussion on the theory established in the previous section,
based on the computer simulated data.

• Section 4: Further extension to the Marčenko-Pastur results, discussing a practical algorithm
for retrieving information about the population covariance matrix based on the data.

• Section 5: Application of the established random matrix theory to the financial data, based on
the S&P500 index.

• Section 6: Conclusion summarising findings of this project.

1.2 Preliminary Definitions and Theorems

In order to begin with the study of Stieltjes transform, it is useful to state the definition of Hermitian
matrix, as well as give (without the proof1) the Lebesgue Dominated Convergence theorem.

Definition 1.2.1 (Hermitian matrix [23]) A square matrix A = (aij) is called Hermitian if it is self-
adjoint, i.e. A = Ā

ᵀ
, where Ā

ᵀ
denotes the conjugate transpose. A square matrix being Hermitian is

equivalent to the condition aij = āji holding.

Theorem 1.2.1 (Lebesgue Dominated Convergence Theorem [20]) Let fn : R→ [−∞,∞] be Lebesgue
measurable functions such that the pointwise limit f(x) = limn→∞ fn(x) exists, and assume that there
exists an integrable function g : R → [0,∞] with |fn(x)| ≤ g(x) for each x ∈ R. Then f is integrable
as is fn for each n, and

lim
n→∞

∫
R
fn dµ =

∫
R

lim
n→∞

fn dµ =

∫
R
f dµ.

1.3 Stieltjes Transform

One of the commonly used techniques in random matrix theory, and perhaps the key tool used to
establish some of the main results in this project, is Stieltjes transform (also called Cauchy transform
in the literature) of functions of bounded variation. It allows for a convenient, and yet very powerful,
way of studying the convergence of spectral distribution of matrices (or operators), and can be though
of, in a loose sense, as an equivalent of the characteristic function of a probability distribution used as
a tool for the central limit theorems [14, p. 2763].

1Refer to Timoney [20] for the detailed discussion and the proof.
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1 Introduction

Definition 1.3.1 (Stieltjes transform [1, p. 514]) Let G(x) be a function of bounded variation on the
real line, then its Stieltjes transform is defined by

mG(z) =

∫
1

λ− z
dG(λ), z ∈ C+,

where z ∈ C+ ≡ {z ∈ C : = z > 0}, i.e. C+ is the set of complex numbers with strictly positive
imaginary part.

It is possible to establish a one-to-one correspondence between the finite measures and their Stieltjes
transforms, as shown in Theorem 1.3.1, below.

Theorem 1.3.1 (Inversion fromula [1, p. 514]) For any continuity points a < b of G, the following
equation holds:

G{[a.b]} = lim
ε↓0

1

π

∫ b

a
=mG(x+ iε) dx.

Proof (of Theorem 1.3.1 [1, p. 514-515]): Firstly, note that it is possible to write

1

π

∫ b

a
=mG(x+ iε) dx =

1

π

∫ b

a

∫
εdG(y)

(x− y)2 + ε2

=

∫
1

π

[
arctan(ε−1(b− y))− arctan(ε−1(a− y))

]
dG(y).

Then, letting ε→ 0 gives that the right-hand side tends to G[a, b] by applying the dominated conver-
gence theorem (see Theorem 1.2.1).

An important observation in the above proof has to be noted, namely

=m(z) = v

∫
dG(x)

(x− u)2 + v2
, (1.3.1)

where z = u+ iv with v > 0. This can be used to establish the property of stieltjes transform of any
distribution function F , which is given in Theorem 1.3.2.

Theorem 1.3.2 (Stieltjes transform of a distribution [1, p.517]) For any distribution function F , its
Stieltjes transform m(z) satisfies

|<m(x)| ≤ v−1/2
√
=m(z).

Proof (of Theorem 1.3.2 [1, p. 517]): Clearly

|<m(z)| =
∣∣∣∣∫ (x− u) dF (x)

(x− u)2 + v2

∣∣∣∣
≤
∫

dF (x)√
(x− u)2 + v2

≤
(∫

dF (x)

(x− u)2 + v2

)1/2

,

and hence the result follows using the relation in (1.3.1).
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1 Introduction

However, most importantly, a simple connection between the Stieltjes transform of the spectral
distribution of a matrix and its eigenvalues exists [14, p. 2764]. It has to be noted that for a m×m
matrix A, and its corresponding spectral distribution Γ (see section 2), the Stieltjes transform is just

mΓ(z) =
1

m
trace

(
(A− zI)−1

)
, (1.3.2)

an equation that is extremely useful in further results in this project, [14, p. 2764]. Moreover, as given
by Bai & Silverstein (see [1, p. 10]), applying the inverse formula from Theorem 1.3.1 to equation
(1.3.2) gives

mΓ(z) =
1

m

m∑
k=1

1

akk − z −αᵀ
k(Ak − zI)−1αk

,

where Ak is the (m− 1)× (m− 1) matrix formed by removing the kth row and column from A, and
αk is the kth column vector of A with the kth element removed.

Finally, the study in this project will be limited to compactly supported measures only, and hence
for the main results, used in the investigation closely following Karoui (see [14]) work in section 4, it
is important to mention five important properties of Stieltjes transforms of measures on R. These are
summarised in Theorem 1.3.3, below.

Theorem 1.3.3 (Important properties of Stieltjes transforms of measures on R [14, p. 2763], [8]) Let
C+ be the set of complex numbers with strictly positive imaginary part, then:

1. If G is a probability measure, mG(z) ∈ C+ if z ∈ C+ and limy→∞−iy ×mG(iy) = 1.

2. If F and G are two measures, and if mF (z) = mG(z), for all z ∈ C+, then G = F almost
everywhere.

3. If Gn is a sequence of probability measures and mGn(z) has a (pointwise) limit m(z) for all
z ∈ C+, then there exists a probability measure G with Stieltjes transform mG = m if and only
if limy→∞−iym(iy) = 1. If it is the case, Gn converges weakly to G.

4. The same is true if the convergence happens only for an infinite sequence {zi}∞i=1 in C+ with a
limit point in C+.

5. If x is a continuity point of the cumulative distribution function of G, then

dG(x)

dx
= lim

ε↓0

1

π
=mG(x+ iε).

Clearly, the point (5.) in Theorem 1.3.3 is equivalent to the inversion formula, given in Theorem
1.3.1. Moreover, the proof of the point (2.) in Theorem 1.3.3 follows trivially by the application of
the inversion formula. The other points will be considered here as a fact, and their proof will not be
given in this project; their proofs are given by Geronimo & Hill in [8, p. 54-58].
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2 Spectral Analysis of High Dimensional Random Matrices

2 Spectral Analysis of High Dimensional Random Matrices

Let A be an m×m matrix with the corresponding eigenvalues λj , for j = 1, 2, . . . ,m, such that each
eigenvalue is real. Associate the empirical spectral distribution of the matrix A, denoted FA, with the
vector of eigenvalues of the matrix A [14, p. 2762]. Define the following one-dimensional distribution
function

FA(x) =
1

m
#{j ≤ m : λj ≤ x}

to be the measure associated with the eigenvalues of the matrix A, where #E denotes the cardinality
of the set E [1, p. 4–5]. The above can be equivalently written as

FA(x) =
1

m

m∑
j=1

I[λj≤x],

using the indicator function notation, where IA is the indicator function of the event A [13, p. 6].
Hence, associate the corresponding measure

dFA(x) =
1

m

m∑
j=1

I[λj=x],

which clearly has m point masses of equal weight.
For a given sequence of high dimensional2 random matrices {An}, the key focus is to investigate the

convergence of the corresponding sequence of empirical spectral distributions {FAn} to the limiting
spectral distribution, denoted by F [1, p. 5]. Note that, if λj →∞ for some j = 1, 2, . . . ,m, then the
above limit distribution is defective in a sense that the total mass is not 1 [1, p. 5].

2.1 Sample Covaraince Matrices

In the field of multivariate statistical inference, the most important and extensively studied random
matrix is the sample covariance matrix [1, p. 39]. For a given population of a fixed size, and num-
ber of taken samples tending to infinity, the sample covariance matrix provides a good and reliable
approximate of the population covariance matrix [3, p. 1382].

That is, in a standard statistical setup, i.i.d. random vectors X1, . . . ,XT ∈ Rn are observed,
where for Xt, t = 1, . . . , T , the corresponding covariance matrix is denoted by Σ. The data matrix
X is then defined as a n × T matrix containing the realisation of a random variable Xt in its tth

column, for t = 1, . . . , n. Under the classical assumptions, value of n is fixed, while T is assumed to
tend to infinity. In this context, the sample covariance matrix, defined below, is a good estimator of
the population eigenvalues – that is the corresponding eigenvalues of the matrix Σ [14, p. 2758].

LetXt ∈ Rn, for t = 1, 2, . . . , T be a set of vectors containing realisations taken from the underlying
distribution X [13, p. 7]. Denote Xt = Xit, for t = 1, 2, . . . , T and i = 1, 2, . . . , n. Then the sample
covariance matrix S is defined as

S =
1

T − 1

T∑
t=1

(
Xt − X̄

) (
Xt − X̄

)ᵀ
, (2.1.1)

where the sample mean vector, X̄ = 1
T

∑T
t=1Xt, is an estimator of the underlying population mean

vector µ ∈ Rn [13, p. 7]. The covariance matrix defined in this way is an unbiased estimator of

2A sequence of matrices where the number of columns tends to infinity.
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2 Spectral Analysis of High Dimensional Random Matrices

the population covariance matrix. Note that sometimes, to emphasise the sample size T , the sample
covariance matrix is denoted by ST , instead of just S.

For high dimensional sample covariance matrices it is possible to use T instead of T − 1 in the
denominator in the equation (2.1.1) without altering the result in a significant degree, since T ≈ T −1
when T is large. Moreover, it is very common in spectral analysis of large dimensional random matrices
to remove the terms X̄ for the equation (2.1.1), in order to calculate the sample covariance matrix as

S =
1

T

T∑
t=1

XtX
ᵀ
t =

1

T
XXᵀ. (2.1.2)

The use of this simplified form of calculating the sample covariance matrix is justified by the fact that
the matrix X̄X̄

ᵀ
is of rank 1, and thus removal of the term X̄ does not affect the limiting spectral

distribution3 [1, p. 39].

Consider the case where Xij are i.i.d. standard normal variables, and write

ST =

(
1

T

T∑
k=1

XikXjk

)n
i,j=1

,

which can be considered as a sample covariance matrix with T samples of a n-dimensional mean-zero
random vector with population matrix equal to identity [1, p. 3]. Then, another important statistic,
used in multivariate analysis, is

TT = log(detST ) =
n∑
j=1

log(λT,j),

where λT,j , for j = 1, . . . , n, are the eigenvalues of ST [1, p. 2-3]. Since for fixed n, λT,j → 1 almost

surely as T →∞, it follows that TT
a.s.→ 0 [1, p. 2-3]. Moreover, for any fixed n,√

T/n TT
D→ N(0, 2),

which can be seen by taking Taylor expansion on log(1 +x), and which suggests that TT is asymptoti-
cally normal given that n = O(T ) [1, p. 3]. However, using results on the limiting spectral distribution
of {ST }, considered further in this section, it is possible to show that if n/T → y ∈ (0, 1) as T →∞,
then √

T/n TT ∼
(
y − 1

y
log(1− y)− 1

)√
Tn→ −∞, a.s.,

as done by Bai & Silverstein in [1, p. 2-3]. This example illustrates the problem of using tests based
on asymptotic normality assumption of TT , which will produce a large error if in fact n/T → y ∈ (0, 1)
when T →∞ [1, p. 3].

3The proof of this claim is given in Bai & Silverstein [1, p. 503], as an immediate consequence of theorem A.2.1 (see
appendix A.2).
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2 Spectral Analysis of High Dimensional Random Matrices

2.2 Wigner Matrices and Semicircular Law

Consider the case where {Xt}Tt=1 are i.i.d. samples taken from an n-dimensional multivariate normal
population N(µ, I), for some mean vector µ ∈ Rn. Let S be the sample covariance matrix, as defined
in (2.1.1), then as T tends to infinity, S → I and

√
T (S − I)→

√
nW n, where the entries above the

main diagonal of
√
nW n are i.i.d. standard normal N(0, 1) and the entries on the diagonal are i.i.d.

normal N(0, 2) [1, p. 15]. Spectral analysis of matrices similar to
√
nW n, called the Wigner matrices

(see definition 2.2.1 below), has been a major study in the field of random matrix theory.

Definition 2.2.1 (Wigner matrix [1, p. 15]) Matrix
√
nW n, as defined above, is called the (standard)

Wigner (or in some literature Gaussian) matrix. A Wigner matrix, in general, is a Hermitian random
matrix with independent entries on and above the diagonal.

Perhaps one of the key results established in regards to Wigner matrices is the semicircular law,
given by Wigner in 1958. The result is stated as Theorem 2.2.1, below.

Theorem 2.2.1 (Wigner’s Semicircular Law [1, p. 15]) Let A be an n × n standard Wigner ma-
trix, normalised by a factor of n−1/2, then its expected empirical spectral distribution tends to the
semicircular law G, where the density of G, denoted by g(·), is given by

g(x) =

{
1

2π

√
4− x2, if |x| ≤ 2,

0, otherwise.

Clearly, the limiting density is a semicircle with radius 2, and note that it is non-random. To
illustrate this, firstly note that if A = (Aij) is an n× n matrix with its elements being i.i.d. standard
normal deviates, i.e.

Aij ∼ N(0, 1), i, j = 1, 2, . . . , n,

where n is assumed to be large, then the matrix Hn such that

Hn =
1

2
(A+Aᵀ) ,

has real entries and is symmetric (Hn = Hᵀ
n), and therefore is Hermitian [13, p. 4-5]. Moreover, by

definition, matrix Hn has independent entries on and above the diagonal, so it is a Wigner matrix.
Note that the ijth entry of Hn = (Hij) is given by

Hij ∼ N(0, σij), σij =
1

2
(1 + δij), (2.2.1)

where δij takes value of 1 if i = j or 0 otherwise [13, p. 5], i.e. is Kronecker’s delta. It is possible
to easily simulate such matrix Hn in order to illustrate the convergence of the empirical spectral
distribution to the semicircular law. Note that, in order for Hn to be standard Wigner matrix it has
to be scaled by a factor of

√
2, which can be seen from (2.2.1) and from the fact that if Z ∼ N(0, 1)

then cZ ∼ N(0, c2) for any constant c ∈ R. The R code written to produce the resultant plots, given in
Figure 2.2.1, uses the in-built rnorm() function to generate i.i.d. normal sample, while the eigenvalues
of the simulated Hn matrix are obtained through the in-built eigen() function; the code is given in
appendix B.1.

Figure 2.2.1 illustrates the fact that the (density) histogram of the ordered eigenvalues converges
to a semicircle lying on the real axis in the range [−2, 2]. In the case when n = 500 the convergence
is distinguishable but there is much irregularity and noise observed nonetheless. As n is increased
10-fold to 5000, the density histogram shows very clear pattern of a semicircle, empirically verifying
the result firstly given by Wigner.
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2 Spectral Analysis of High Dimensional Random Matrices

(a) Simulation with n = 500, bin size 100. (b) Simulation with n = 5000, bin size 100.

Figure 2.2.1: Illustration of the convergence to Wigner’s Semicircular Law, through histograms of the
eigenvalues from a simulated n× n normalised Wigner matrix.

Further results following Wigner’s semicircular law have been given in literature, where, for example,
the convergence of ||FWn−G|| → 0 has been shown to hold in probability [1, p. 15]. Bai & Silverstein
have provided a general result that holds for non-i.i.d. case, shown in Theorem 2.2.2, below.

Theorem 2.2.2 (Generalisation of Wigner’s Semicircular Law to non-i.i.d. case [1, p. 26]) Let
W n = 1√

n
Xn be a Wigner matrix, such that entries above or on the diagonal of Xn are independent

but may be dependent on n, and are not necessarily identically distributed. Moreover, assume that all

the entries of Xn =
(
x

(n)
jk

)
have zero mean and unit variance, and satisfy the condition that, for any

constant η > 0,

lim
n→∞

1

n2

∑
j,k

E
(
|x(n)
jk |

2 I[|x(n)jk |≥η
√
n
]) = 0.

Then, the empirical spectral distribution of W n converges to the semicircular law almost surely.

The proof of Theorem 2.2.2 through moment convergence theorem (MCT), as given by Bai & Silverstein
in [1, p. 27-31], bases on 5 steps:

1. Truncation, where a new matrix W̃ = 1√
n
n

(
x

(n)
ij I[|x(n)ij |≤ηn

√
n
]) is formed for a selected sequence

ηn ↓ 0; then it can be shown that in order to prove convergence with probability one of FWn

to the semicircular law, it is sufficient to show the convergence in probability of F W̃n to the
semicircular law.

2. Diagonal elements removal, where the matrix Ŵ n is formed from the matrix W̃ n by setting

diagonal elements equal to 0; then it can be shown that L3
(
F W̃n , F Ŵn

)
→ 0.

3. Centralisation, where it is shown that L3
(
F Ŵn , F Ŵn−E(Ŵn)

)
→ 0.

10
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4. Rescaling, where by writing W̃ n = 1√
n
X̃n, for

X̃n =

x
(n)
ij I[|x(n)ij |≤ηn

√
n
] − E

(
x

(n)
ij I[|x(n)ij |≤ηn

√
n
])

σij
(1− δij)

 ,

it can be shown that L3
(
F W̃n , F Ŵn−E(Ŵn)

)
→ 0, almost surely.

5. And finishing the proof using Moment Convergence Theorem4, by which it is shown that E(βk(W n))
converges to the kth moment βk of the semicircular distribution, and that for each fixed k,∑

n

E |βk(W n)− E(βk(W n))|4 <∞,

where βk(W n) is the kth moment of the empirical spectral distribution of W n, defined as
βk(W n) = βk(F

Wn) =
∫
xk dFWn(x).

Refer to Bai & Silverstein [1, p. 26-31] for explicit proofs for each of the aforementioned steps.
Note that the proof through the Moment Convergence Theorem relies on the existence of moments
and hence is not fully desired. As an alternative, following completion of steps 1-4, it is possible to
complete the proof of Theorem 2.2.2 using Stieltjes transform of the semicircular law (refer to [1, p.
31-38] for the complete proof).

It should be noted that the Stieltjes transform for the semicircular law is given by [22, p. 7]

m(z) = −1

2
(z −

√
z2 − 4),

or, more generally, for a semicircular law that has been scaled5 through a parameter σ2, its Stieltjes
transform is given by [?, p. 31-32]

m(z) = − 1

2σ2
(z −

√
z2 − 4σ2),

as argued using the fact that by definition

m(z) =
1

2σ2

∫ 2σ

−2σ

1

x− z
√

4σ2 − x2 dx,

which can be rewritten (letting x = 2σ cos y) as

m(z) = − 1

4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ2(σζ2 + σ − zζ)
dζ,

where ζ = eiy. Evaluating the residues, and then using the residue theorem to evaluate the integral
yields the result (see [?, p. 31-32] for the extensive proof); where by convention the square root of a
complex number is taken to be the one with positive imaginary part.

4See appendix A.6 for the statement of the Moment Convergence Theorem.
5The density of the scaled semicircular law is given by

g(x) =

{
1

2πσ2

√
4σ2 − x2, if |x| ≤ 2,

0, otherwise.

11
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2.3 Marčenko-Pastur Law

The Marčenko-Pastur law, perhaps the key result of random-matrix theory for use in multivariate
analysis, can be regarded as an analogue of Wigner’s semicircular law [13, p. 10]. It provides a
non-random limiting distribution of the eigenvalues of a n × n, say, sample covariance matrix when
n → ∞. Therefore, although the standard estimator S, given in equation (2.1.1), of the sample
covariance matrix provides a good approximation to the true n×n, say, population covariance matrix
Σ, when n is fixed and finite, it is not true in the case when n is large, and not fixed (tends to infinity).

Let y be the dimension to sample size ratio index. Using the notation from section 2.1, y is defined
as the ratio of n/T . Then, for y ≤ 1, the Marčenko-Pastur (M-P) law, denoted by Fy(x), has a density
function given by

fy(x) =

{
1

2πxyσ2

√
(b− x)(x− a), for a ≤ x ≤ b,

0, otherwise,
(2.3.1)

where a = σ2(1−√y)2 and b = σ2(1 +
√
y)2; and for y > 1 it has a point mass 1− 1/y at the origin

[1, p. 40]. Here, σ2 denotes the scale parameter, where the standard Marčenko-Pastur law is defined
for σ2 = 1 [1, p. 40].

It has been shown that for a wide class of sample covariance matrices, the corresponding empirical
spectral distribution converges to asymptotically non-random result [14, p. 2763]. For the special
case where the population covariance matrix, Σ, is an identity matrix multiplied by some positive
constant σ2 ∈ R+, the Marčenko-Pastur law describes the limiting behaviour of the empirical spectral
distribution. The more general result is then considered in section 2.5.

Theorem 2.3.1 (Convergence to Marčenko-Pastur law [1, p. 47]) Let {xit}, for t = 1, 2, . . . , T and
i = 1, 2, . . . , n, be i.i.d. complex random variables with variance σ2. Assume that n/T → y ∈ (0,∞).
Then the empirical spectral distribution of sample covariance matrix, FS, tends to Marčenko-Pastur
law, defined in (2.3.1), with probability one.

Theorem 2.3.1 considers the limiting spectral distribution of the sample covariance matrix with the
underlying variable coming from an i.i.d. population. This result can be also obtained using Theorem
2.5.1, stated by Karoui in [14], in a setting where the population eigenvalues are 1.

Yin [24, p. 50-67], has given a proof of the result similar to Theorem 2.3.1 (only for real complex
variables with mean zero), which bases on a truncation technique and sophisticated combinatorial
techniques, requiring an extensive discussion on results in graph theory. Bai & Silverstein [1], have
then provided an extension to that result, denoted here as Theorem 2.3.1, which bases on two main
steps: firstly doing truncation, centralisation and rescaling, and then working with moments of the
Marčenko-Pastur law, using results from graph theory and combinatorics. For the extensive proof see
Bai & Silverstein [1, p. 48–50].

That said, as in the case of the convergence to Wigner’s semicircular law, (an extension of the)
result shown in Theorem 2.3.1 can also be proven using Stieltjes transform. This is considered in
section 2.3.2, which makes use of the truncation, centralisation and rescaling step discussed next.

12
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2.3.1 Truncation, Centralisation, and Rescaling Technique

A similar idea of application of the truncation, centralisation and rescaling technique has already been
mentioned in regards to proving Theorem 2.2.2. In the Marčenko-Pastur setting, it provides theoretical
grounds for assumption that variables xit are uniformly bounded with mean zero and variance 1. This
technique has been stated by Bai & Silverstein [1, p. 48], and shall be closely reproduced in this section.

Firstly, recall that n and T are assumed to tend to infinity. Now, fix a positive number C, and define

x̂it = xit I[|xit|≤C],

x̃it = x̂it − E(x̂11),

x̂t = (x̂t1, . . . , x̂tn)′,

x̃t = (x̃t1, . . . , x̃tn)′,

ŜT =
1

T

T∑
i=1

x̂ix̂
ᵀ
i =

1

T
X̂X̂

ᵀ
,

S̃T =
1

T

T∑
i=1

x̃ix̃
ᵀ
i =

1

T
X̃X̃

ᵀ
,

where notation A′ means conjugate transpose of A.

Denote the empirical spectral distributions of ŜT and S̃T by F ŜT and F S̃T , respectively. Using
Theorem A.1.1 and the strong law of large numbers, it follows that

L4(FS , F ŜT ) ≤

 2

Tn

∑
i,t

(|x2
it|+ |x̂2

it|)

  2

Tn

∑
i,t

(|xit − x̂it|2)


≤

 4

Tn

∑
i,t

|x2
it|

  1

Tn

∑
i,t

(
|x2
it| I[|xit|>C]

) ,

and so
L4(FS , F ŜT )→ 4E

(
|x2
it| I[|xit|>C]

)
, a.s. (2.3.2)

By choosing C large enough, the right-hand side of equation (2.3.2) can be made arbitrarily small.
Moreover, using Theorem A.2.1, it follows that

||F ŜT − F S̃T || ≤ 1

n
rank

[
E(X̂)

]
=

1

n
. (2.3.3)

Let σ̃2 = E(|x̃it|2)→ 1, as C →∞. Using Theorem A.1.1, it follows that

L4(F S̃T , F σ̃
−2S̃T ) ≤ 2

1 + σ̃2

Tnσ̃2

∑
i,t

|x̃it|2
 1− σ̃2

Tnσ̃2

∑
i,t

|x̃it|2
 ,

and so
L4(F S̃T , F σ̃

−2S̃T )→ 2(1− σ̃4), a.s. (2.3.4)

Again, by choosing C large enough, the right-hand side of equation (2.3.4) can be made arbitrarily
small, due to the fact that σ̃2 → 1 as C →∞, and hence so does σ̃4.

By combining equations (2.3.2), (2.3.3) and (2.3.4), it has been shown that indeed variables xit are
uniformly bounded with mean zero and variance 1, which concludes this section.
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2.3.2 Generalisation to Not Identically Distributed Case

It has been further possible, using the Stieltjes transform approach, to generalise the previous result,
stated in Theorem 2.3.1, to the case in which the entries of Xt depend on t, and for each t they are
independent, but not identically distributed [1, p. 51]. The result given by Bai & Silverstein is given
in Theorem 2.3.2, using the established previously notation.

Theorem 2.3.2 (Convergence to Marčenko-Pastur law for not identically distributed random vari-
ables [1, p. 51]) Let for each t the entries of X be independent complex variables with a common mean
µ and variance σ2. Assume that n/T → y ∈ (0,∞), and that, for any η > 0,

1

η2nt

∑
j,k

E
(
|x(n)
jk |

2 I[|x(n)jk |≥η
√
n
])→ 0. (2.3.5)

Then, with probability one, FS tends to Marčenko-Pastur law with ratio index y and scale index σ2.

As already mentioned, there are different methods of proving Theorem 2.3.2, however, in this
project an illustration of a sketch proof through an application of Stieltjes transforms to sample
covariance matrices will be shown (in contrast to using the Moment Convergence Theorem).

Firstly, in order to proof6 Theorem 2.3.2 using Stieltjes transform, the transform of the Marčenko-
Pastur law has to be established; this result and a sketch proof is shown below, as Lemma 2.3.3.

Throughout the section, let z = u + iv be such that v > 0, and denote the Stieltjes transform of the
Marčenko-Pastur law by m(z).

Lemma 2.3.3 (Stieltjes Transform of the Marčenko-Pastur Law [1, p. 52]) Using previously estab-
lished notation,

m(z) =
σ2(1− y)− z +

√
(z − σ2 − yσ2)2 − 4yσ4

2yzσ2
. (2.3.6)

Proof (of Lemma 2.3.3, sketch version [1, p. 52-53]): For y < 1, by definition

m(z) =

∫ b

a

1

x− z
1

2πxyσ2

√
(b− x)(x− a) dx,

where a = σ2(1−√y)2 and b = σ2(1 +
√
y2).

Now, let x = σ2(1 + y + 2
√
y cosw and set ζ = eiw, which allows the Stieltjes transform of the

Marčenko-Pastur law to be written as

m(z) =

∫ π

0

2

π

1

(1 + y + 2
√
y cosw)(σ2(1 + y + 2

√
y cosw)− z)

sin2w dw

=
1

π

∫ 2π

0

((eiw − e−iw)/2i)2

(1 + y +
√
y(eiw + e−iw))(σ2(1 + y +

√
y(eiw + e−iw))− z)

dw

= − 1

4iπ

∮
|ζ|=1

(ζ − ζ−1)2

ζ(1 + y +
√
y(ζ + ζ−1))(σ2(1 + y +

√
y(ζ + ζ−1))− z)

dζ

= − 1

4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ((1 + y)ζ +
√
y(ζ2 + 1))(σ2(1 + y)ζ +

√
yσ2(ζ2 + 1)− zζ)

dζ.

6All theorems and proofs given in this section reproduce very closely results given by Bai & Silverstein [1].
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There are five simple poles, of the integrand function above, at

ζ0 = 0,

ζ1 =
−(1 + y) + (1− y)

2
√
y

,

ζ2 =
−(1 + y)− (1− y)

2
√
y

,

ζ3 =
−σ2(1 + y) + z +

√
σ4(1− y)2 − 2σ2(1 + y)z + z2

2σ2√y
,

ζ4 =
−σ2(1 + y) + z −

√
σ4(1− y)2 − 2σ2(1 + y)z + z2

2σ2√y
.

It can be shown, after a calculation, that the residues at these five poles are given by

1

yσ2
, ∓1− y

yz
, and ± 1

σ2yz

√
σ4(1− y)2 − 2σ2(1 + y)z + z2.

Observe that ζ3ζ4 = 1. Also, by the definition of the square root of complex numbers, the real
part and imaginary part of

√
σ4(1− y)2 − 2σ2(1 + y)z + z2 and −σ2(1 + y) + z have the same signs

and thus |ζ3| > 1, |ζ4| < 1. Similarly, |ζ1| = |−
√
y| < 1, and |ζ2| = |−1/

√
y| > 1. Cauchy integration,

therefore, gives

m(z) = −1

2

(
1

yσ2
− 1

σ2yz

√
σ4(1− y)2 − 2σ2(1 + y)z + z2 − 1− y

yz

)
=
σ2(1− y)− z +

√
(z − σ2 − yσ2)2 − 4yσ4

2yzσ2
,

consequently proving Lemma 2.3.3 for the case of y < 1.
When y > 1, as the Marčenko-Pastur law has also a point mass 1− 1

y at zero, its Stieltjes transform,
m(z), is equal to the integral above plus −(y − 1)/yz. Note that, now, |ζ1| = | − √y| > 1 and
|ζ2| = | − 1/

√
y| < 1, so the residue at ζ2 should be counted into integral. After some elementary

calculations, similar to the y < 1 case, it can be shown that indeed equation given by Lemma 2.3.3
holds when y > 1.

Finally, for the case y = 1, it can be argued that quation given by Lemma 2.3.3 holds by continuity
in y. This, hence, concludes the proof.

In order to prove Theorem 2.3.2, as done by Bai & Silverstein in [1, p. 52-58], it has to be noted that
by using the truncating, centralising and rescaling approach (see section 2.3.1), it is possible to further
assume that:

1. |xit| < ηT
√
T , where a sequence ηT ↓ 0 is selected so that the condition (2.3.5) holds true for η

replaced by ηT .

2. E(xit) = 0 and Var(xit) = 1.

Proof (of Theorem 2.3.2, sketch version [1, p. 53-58]): For clarity of notation, denote ST to be
the sample covariance matrix of data X, previously denoted as S. Let the Stieltjes transform of the
empirical spectral distribution of ST be denoted by mT (z). As in (1.3.2), define

mT (z) =
1

n
trace

(
(ST − zI)−1

)
,

where I is the n× n identity matrix.
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Then, the proof is completed by three steps:

1. For any fixed z ∈ C+, mT (z)− E (mT (z))→ 0, a.s.

2. For any fixed z ∈ C+, E (mT (z))→ m(z), the Stieltjes transform of the Marčenko-Pastur law.

3. Except for a null set, mT (z)→ m(z) for every z ∈ C+.

Note that step 3 is being implied by the previous two steps, and hence its proof can be omitted.

Step 1: almost sure convergence of the random part: The aim of the first step is to prove that

mT (z)− E (mT (z))→ 0, a.s. (2.3.7)

Let Ek(·) denote the conditional expectation given {xk+1, . . . ,xT }. Then, using the formula

(A+αβᵀ)−1 = A−1 − A
−1αβᵀA−1

1 + βᵀA−1α
,

it follows that

mT (z)− E (mT (z)) =
1

n

T∑
k=1

[
Ek
(
trace

(
(ST − zI)−1

))
− Ek−1

(
trace

(
(ST − zI)−1

))]
=

1

n

n∑
k=1

γk,

where, by Theorem A.3.1,

γk = (Ek − Ek−1)
[
trace

((
ST − zI)−1

))
− trace

((
STk − zI)−1

))]
= −(Ek − Ek−1)

xᵀ
k (STk − zI)−2 xk

1 + xᵀ
k (STk − zI)−1 xk

,

and STk = ST − xkxᵀ
k. Furthermore, it should be noted that∣∣∣∣∣ xᵀ

k (STk − zI)−2 xk

1 + xᵀ
k (STk − zI)−1 xk

∣∣∣∣∣ ≤ xᵀ
k((STk − uI)2 + v2I)−1xk
=(1 + xᵀ

k(STk − zI)−1xk)
=

1

v
.

Since {γk} forms a sequence of bounded martingale differences, by Theorem A.5.1 with p = 4, it
follows that

E|mT (z)− E (mT (z)) |4 ≤ K4

n4
E

(
n∑
k=1

|γk|2
)2

≤ 4K4T
2

v4n4
= O(T−2),

which combined with Borel-Cantelli lemma, implies that (2.3.8) holds, completing the proof of the
first step.
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Step 2: mean convergence: The aim of the second step is to prove that

E (mT (z))→ m(z), (2.3.8)

with m(z) as defined in (2.3.6), and σ2 = 1.
It can be shown, by Theorem A.4.1, that

mT (z) =
1

n

n∑
k=1

1
1
Tα
′
kᾱk − z −

1
T 2α

′
kX

ᵀ
k

(
1
TXkX

ᵀ
k − zI

)−1
Xkᾱk

, (2.3.9)

where I is the corresponding (n− 1)× (n− 1) identity matrix, Xk is the matrix obtained from X by
removing the kth row, and α′k is the kth row of X.

Set
εk = 1

Tα
′
kᾱk − 1− 1

T 2α
′
kX

ᵀ
k

(
1
TXkX

ᵀ
k − zI

)−1
Xkᾱk + yT + yT z E(mT (z)),

where yT = n/T . Then, using (2.3.9), it follows that

E(mT (z)) =
1

1− z − yT − yT z E(mT (z))
+ δT , (2.3.10)

where

δT = − 1

n

n∑
k=1

E
(

εk
(1− z − yT − yT z E(mT (z)))(1− z − yT − yT z E(mT (z)) + εk)

)
.

Using equation (2.3.10) to solve for E(mT (z)), yields two solutions

m1(z) =
1

2yT z

(
1− z − yT + yT zδT +

√
(1− z − yT − yT zδT )2 − 4yT z

)
,

m2(z) =
1

2yT z

(
1− z − yT + yT zδT −

√
(1− z − yT − yT zδT )2 − 4yT z

)
,

By comparison with the Stieltjes transform of the Marčenko-Pastur law, given in (2.3.6), in order
to prove the second step, it hence suffices to show that

E(mT (z)) = m1(z), (2.3.11)

and
δT → 0. (2.3.12)

Starting with the proof of (2.3.11), observe that as v →∞, E(mT (z))→ 0, and hence also δT → 0 by
(2.3.10). This shows that E(mT (z)) = m1(z) for all z such that their imaginary part is large.

Now assume that E(mT (z)) = m1(z) does not hold for all z ∈ C+. Then, using continuity of m1

and m2 argument, there exists a z0 ∈ C+ such that m1(z0) = m2(z0), which implies that

(1− z0 − yT + yT zδT )2 − 4yT z0(1 + δT (1− z0 − yT )) = 0.

Therefore

E(mT (z)) = m1(z0) =
1− z0 − yT + yT z0δT

2yT z0
.
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Substitution of the solution δT of equation (2.3.10) into the above identity, gives

E(mT (z0)) =
1− z0 + yT

yT z0
+

1

yT + z0 − 1 + yT z0 E(mT (z0))
. (2.3.13)

Note that for any Stieltjes transform m(z) of probability F defined on positive real axis, R+, and for
any positive y, the following result holds

=(y + z − 1 + yzm(z)) = =
(
z − 1 +

∫ ∞
0

yxdF (x)

x− z

)
= v

(
1 +

∫ ∞
0

yxdF (x)

(x− u)2 + v2

)
> 0. (2.3.14)

Based on (2.3.14), it follows that the imaginary part of the second term in (2.3.13) is negative.
For yT ≤ 1, it can be seen that =(1 − z0 − yT )/(yT z0) < 0, and hence it can be concluded that
=E(mT (z0)) < 0, which is a contradiction, as the imaginary part of the Stieltjes transform is positive.
Hence, this argument proves, by contradiction, (2.3.11) for the case when yT ≤ 1.

In order to prove the statement (2.3.11) for the case when yT > 1, note that by (2.3.13) and
(2.3.14), it follows that

yT + z0 − 1 + yT z0 E(mT (z0)) =
√
yT z0. (2.3.15)

Now, let m̃T (z) be the Stieltjes transform7 of the matrix 1
TX

ᵀX. Then, the relation between mT and
m̃T , noting that 1

TX
ᵀX and ST = 1

TXX
ᵀ have the same set of nonzero eigenvalues, is given by

sT (z) = y−1
T m̃T (z)−

1− y−1
T

z
,

which holds both when yT > 1 and yT ≤ 1. Hence, using the above relation, it follows that

yT − 1 + yT z0 E(mT (z0)) = z0 E(m̃T (z0)),

which substituted into (2.3.15) gives

1 + E(m̃T (z0)) =

√
y

√
z0
,

leading to a contradiction that the imaginary part of left-hand side is positive, while the imaginary
part of the right-hand size is negative.

This concludes the proof of (2.3.11).

Turning to the proof of (2.3.12), rewrite

δT =− 1

n

n∑
k=1

(
E(εk)

(1− z − yT − yT z E(mT (z)))2

)

+
1

n

n∑
k=1

E
(

ε2k
(1− z − yT − yT z E(mT (z)))2(1− z − yT − yT z E(mT (z)) + εk)

)
= J1 + J2.

Firstly, by the assumption made that E(xit) = 0 and Var(xit) = 1, it should be noted that it is
possible to show (see [1, p. 57]) that

|E(εk)| ≤
1

T
+
|z| yT
Tv

→ 0,

7Note, in section 2.5, the notation from m̃(z) is changed to v(z).
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implying that J1 → 0.
Moreover, it is possible to show that J2 → 0. Notice that, since

=(1− z − yT − yT z E(mT (z)) + εk)

= =

(
1

T
α′kᾱk − z −

1

T 2
α′kX

ᵀ
k

(
1

T
XkX

ᵀ
k − zI

)−1

Xkᾱk

)

= −v

1 +
1

T 2
α′kX

ᵀ
k

[(
1

T
XkX

ᵀ
k − uI

)2

+ v2I

]−1

Xkᾱk

 < −v,

combining this with (2.3.14), gives

|J2| ≤
1

nT 3

n∑
k=1

E|εk|2

=
1

nT 3

n∑
k=1

[
E|εk − Ẽ(εk)|2 + E|Ẽ(εk)− E(εk)|2 + (E(εk))

2
]
,

where E(·) denotes the conditional expectation given {αj , j = 1, . . . , k − 1, k + 1, . . . , n}. Now, recall
that

|E(εk)| ≤
1

T
+
|z| y
Tv
→ 0.

Moreover, it is possible to show (see [1, p. 58]) that

1

T 2
Ẽ|ε′k − Ẽ(εk)|2 ≤

η2
T

v2
+

2

Tv2
,

for the sequence ηT defined previously, as well as (see [1, p. 58]) that

E|Ẽ(εk)− E(εk)|2 ≤
|z|2y2

Tv2
→ 0.

Combining the three estimation above completes the proof of the mean convergence of the Stieltjes
transform of the empirical spectral distribution of Sn.

Consequently, Theorem 2.3.2 is proved by the method of Stieltjes transforms.
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2 Spectral Analysis of High Dimensional Random Matrices

2.4 Limits of Eigenvalues of a Large Dimensional Sample Covariance Matrix

The limiting behaviour of the spectral distribution of a sample covariance matrix was studied in the
section 2.3. The almost sure convergence of the empirical spectral distribution has been shown for a
sample covariance matrix, given that random variable X11 has a finite second moment8 (variance).
However, given more rigorous constraints on the moments, it is possible to establish almost sure bounds
on the smallest and largest eigenvalues. This is shown in the following two theorems.

Theorem 2.4.1 (Bai-Yin Theorem [2, p. 1276]) Let {Xit}, for t = 1, 2, . . . , T and i = 1, 2, . . . , n, be
i.i.d. random variables with zero mean and unit variance, and define for X = (Xit) the matrix

S =
1

T
XXᵀ.

Then, if E |X11|4 < ∞, as T → ∞, n → ∞, and n/T → y ∈ (0, 1), the following inequality holds
almost surely:

−2
√
y ≤ lim inf λmin(S − (1 + y)I) ≤ lim supλmax(S − (1 + y)I) ≤ 2

√
y,

where I is the identity matrix, and λ(·) denotes the eigenvalues of the expression in (·).

An immediate result based on the Theorem 2.4.1 is as follows.

Theorem 2.4.2 (Extension to Bai-Yin Theorem [2, p. 1276]) Under the conditions of Theorem 2.4.1,
as T →∞, n→∞, and n/T → y ∈ (0, 1), the following inequalities holds almost surely:

limλmin = (1−√y)2

limλmax = (1 +
√
y)2

The proof of Theorem 2.4.1 (and hence of its immediate result stated in Theorem 2.4.2) is given by
Bai & Yin (see [2]). To establish the result few intermediate lemmas are required, which will not be
stated in this project.

In particular, Theorem 2.4.2 implies that the estimator for the largest (or, also, the smallest) eigenvalue
is not consistent. Hence, under the assumption of large T , large n asymptotics, there are some
fundamental differences in the multivariate statistics behaviour, example of which can be seen through
the above theorem [14, p. 2758].

In the case when the population covariance matrix Σ = I, i.e. is the identity matrix, implying
i.i.d. random variables, and both T and n tend to infinity, the largest sample eigenvalue is biased,
which in some cases can be in a very significant degree, as for example if the ratio n/T → y, where
y is approximately 1, then in the limit λmax ≈ 4, while the true largest eigenvalue is just 1. This is a
drastic 4-fold difference.

Therefore, it is important to seek methods for accounting or correcting this bias, in order to be
able to successfully conduct data analysis. Karoui in [14] has used random matrix theory, building
upon Marčenko-Pastur result, to aid statisticians in retrieving meaningful information under the large
T , large n asymptotics framework; the proposed approach will be studied in this project in section 4.
The key element of which is to provide an accurate estimate of the population spectral distribution,
that is a probability measure responsible for the characterisation of the population eigenvalues.

8Since Xit, for t = 1, 2, . . . , T and i = 1, 2, . . . , n, are i.i.d. random variables, if one of them has a finite variance then
all of them do.
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2 Spectral Analysis of High Dimensional Random Matrices

2.5 Marčenko-Pastur Equation

Let HΣ denote the spectral distribution of the m×m population covariance matrix, Σ. Analogically
to the empirical spectral distribution, define the population spectral distribution measure as

dHΣ(x) =
1

m

m∑
j=1

I[λj=x],

using the indicator function notation, where IA is the indicator function of the event A [14, p. 2761].
For example, if Σ is the identity matrix of size n × n, then clearly the corresponding eigenvalues

are all equal to 1, and thus the population spectral distribution in this case is a point mass at point
1 [14, p. 2762]. This is exactly the discussed previously special case, in which the limiting behaviour
of the empirical spectral distribution is described by theorem 2.3.1.

Now, assume that a n × T data matrix is given, called X. Following the work of Karoui (see [14, p.
2764]) calculate the sample covariance matrix S by S = 1

TXX
ᵀ, as given in the equation (2.1.2). By

the results established previously, without loss of generality it can be assumed that X has mean 0.
Denote by mFS the Stieltjes transform of the spectral distribution, FS , of the matrix S. Moreover,
define a function

vFS (z) =
(

1− n

T

) −1

z
+
T

n
mFS (z),

to be the Stieltjes transform of the spectral distribution of 1
TX

ᵀX.
Then, the well known Marčenko-Pastur equation provides a remarkable way of linking the limiting

spectral distribution, F , to the limiting behaviour of the population spectral distribution, H. This
result is shown below as Theorem 2.5.1, using the established above notation. It is important to
note that Silverstein (see [19, p. 331-338]) has provided a proof of this result requiring only for two
moments, however, the further results based on Karoui (see [14]) call for all four moments.

Theorem 2.5.1 (The Marčenko-Pasur equation [?, p. 2764]) Let X be a given data matrix, with
Xᵀ = Y Σ1/2, where Σ is a n × n positive definite matrix, and Y ≡ {Y ti} for t = 1, . . . , T
and i = 1, . . . , n is an T × n matrix containing i.i.d. (real or complex) entries, with E(Y ti) = 0,
E(|Y ti|2) = 1 and E(|Y ti|4) < ∞. Let Σ be the population covariance matrix, and assume that its
spectral distribution HΣ converges weakly to a limit denoted by H. Then for T → ∞, n → ∞, and
n/T → y ∈ (0,∞):

1. vFS (z)
a.s.→ v∞(z), where v∞ is a deterministic function.

2. v∞(z) satisfies the equation

− 1

v∞(z)
= z − y

∫
λ dH(λ)

1 + λv∞(z)
∀z ∈ C+ (2.5.1)

3. Equation (2.5.1) has exactly one solution which is the Stieltjes transform of a measure.

Theorem 2.5.1 implies that asymptotically the spectral distribution of the sample covariance matrix
S is nonrandom, and its characterisation is given through the relation, given in equation (2.5.1),
with the true population spectral distribution [14, p. 2765]. Moreover, for the special case, in which
the population eigenvectors are equal to 1, links the result of Theorem 2.5.1 directly to the studied
previously Marčenko-Pastur law.
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2 Spectral Analysis of High Dimensional Random Matrices

Proof of Theorem 2.5.1 has been given by Silverstein in [19], and strongly bases on techniques and
results given by Bai & Silverstein [1]. That said, many results leading to establishing this theorem
have been given in this project, in previous sections.

Theorem 2.5.1 has been basis for Karoui’s work [14], which gives an algorithm to extract meaningful
information about the population spectral distribution, H, in a practical setting; this idea is studied
further in section 4. It has to be noted that the aforementioned algorithm has been proved by Karoui
[14] to be consistent – a result that follows as a consequence of the theorem stated next.

Theorem 2.5.2 (Karoui [14, p. 2779-2780]) Under the setup of Theorem 2.5.1, suppose that HΣ →
H, and n/T → y ∈ (0,∞). Also, assume that the spectra of the {Σn}’s are uniformly bounded.
Let J1, J2, . . . be a sequence of integers that tend to infinity. Let z0 ∈ C+ and r ∈ R+ be such that
B(z0, r) ⊂ C+. Let z1, z2, . . . be a sequence of complex variables with a limit point, all contained in
B(z0, r). Let Ĥn be the solution of

Ĥn = arg min
H̃

max
j≤Jn

∣∣∣∣∣ 1

vFS (zj)
+ zj −

n

T

∫
λ dH̃(λ)

1 + λvFS (zj)

∣∣∣∣∣ ,
where H̃ is a probability measure. Then Ĥ → H, almost surely.

The proof of Theorem 2.5.2 has been given by Karoui [14, p. 2780-2785] and will not be repro-
duced in this project. It bases on some intermediate lemmas, with some results following from the
Theorem 2.5.1.
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3 Emperical Study of Spectral Analyis of Simulated Data

Theoretical results established in section 2 equip statisticians with very powerful large dimensional
asymptotics results in regards to the spectral analysis of sample covariance matrices or Wigner matri-
ces. It has to be noted, however, that, for example, although the semicircle law enables application to
uncorrelated random graphs, practical applications used in description of complex systems such as the
Internet, metabolic pathways, networks of power stations, or scientific collaborations, which often have
inherited correlation, may not follow this law [6]. There has been done much research in the literature,
over the recent decade, in practical applications of the theoretical results shown in this project, which
extend the aforementioned results to fit the specific data under the study. In this particular project
financial data is considered, for which the results from section 2 can be easily extended (see section 4),
as well as used for the comparison with the actual observation in order to find meaningful information
(see section 5).

In this chapter the focus is placed on verifying the results from section 2 based on the computer
simulated data from two distributions: the normal distribution and the Cauchy distribution, where in
the first part only the normal distribution is used to illustrate the convergence of the spectral distri-
bution of sample covariance matrix to the semicircular law, and in the second part both distributions
are used to verify the Marčenko-Pastur results.

The normal (or Gaussian) distribution with mean parameter µ and standard deviation σ, denoted
as N(µ, σ2), with a probability density function given by

f(x|µ, σ) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, x ∈ R, µ ∈ R, σ > 0,

is perhaps one of the most commonly used distributions, with a large range of applications to practical
data sets in many fields of science [16]. However, most importantly, the first four moments are finite (in
fact, all moments are finite), which is sufficient for the application of the theoretical results established
in this project9.

In a contrast to this, the Cauchy distribution with the location parameter a and the scale parameter
b, with a probability density given by

f̃(x|a, b) =
1

π b[1 + ((x− a)/b)2]
, a ∈ R, b > 0,

does not have any finite moment. Therefore, this practical choice of the two distributions enables
to investigate and illustrate the contrast in achieved results regarding the spectral analysis of the
simulated data, since the theoretical results are not applicable to distributions without finite moments
of any order, i.e. to the Cauchy distribution.

3.1 Empirical Verification of Wigner’s Semicircular Law

In section 2.2 an example of direct simulation of a Wigner matrix using the method of generating a
sample of i.i.d. normal observations and creating a scaled symmetric matrix has already been given.
A strong convergence to the theoretical results has been already observed for the case where the size
of the matrix was 5000 × 5000, whereas relatively good, yet with some observable noise, result was
achieved in the case when the matrix was only of size 500× 500.

Here, Wigner’s semicircular law is revisited, where under study is the empirical spectral distribution
of sample covariance matrix based on a multivariate normal distribution with mean vector of n zeroes

9Note that four moments are mentioned, as the result given by Karoui [14] (see section 4) call for it; that said, the
empirical verification of this result will not be pursued in this project.
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3 Emperical Study of Spectral Analyis of Simulated Data

(a) Simulation with n = 500, T = 5000, bin size 50. (b) Simulation with n = 500, T = 50000, bin size 50.

Figure 3.1.1: Study of the convergence to Wigner’s Semicircular Law, through histograms of the
eigenvalues of sample covariance matrix of simulated multivariate normal data.

and the population covariance matrix Σ = I, the n× n identity matrix. The value of n will be fixed
to 500 in order to allow for the comparison with the result achieved in section 2.2, while keeping the
value of n relatively small in order to allow for better code performance when sample size T is chosen
large. During the simulation different values of T where chosen, where the results for T = 5000 and
T = 50000 are presented10.

Based on the figure 3.1.1, it can be seen that relatively large value of T is required (for n = 500,
T = 50000 the data matrix is about 200 Mb in size), for the empirical spectral distribution to start
to converge to semicircular law. In general, it has been observed that for results with T < 20000
the histogram is generally skewed, whereas increasing the sample size affects the overall shape of the
histogram. Varying n on the other hand controls the amount of noise observed in the plot, with
larger n resulting in smoother looking eigenvalue distribution and smaller local variance in ordered
eigenvalues frequency.

In conclusion, the convergence rate to the semicircular in the above experiment can be considered
as slow. Moreover, in general, the theory requires data that not only follows the rigorous restrictions
about the population distribution structure (covariance matrix), stated in Theorem 2.2.1, but also,
based on the conducted study, needs to be drawn from a large sample size. That said, any observed
significant deviations away from the typical [−2, 2] range for the eigenvalues can highlight a statistically
significant eigenvalue, and hence help to determine the eigenvector that holds true information about
the population distribution – a key factor of the principal component analysis.

3.2 Empirical Verification of Marčenko-Pastur Results

In this section the limiting spectral distribution, distributed according to Marčenko-Pastur law, with
density as given in (2.3.1), will be compared to the attained empirical limiting spectral distribution
of sample covariance matrix calculated from the simulated data on a computer. The generated data
comes from multivariate normal distribution with zero mean and population covariance matrix equal to
the identity matrix, as well as the i.i.d. (standard) Cauchy random variables with location parameter
a = 0, and scale parameter b = 1.

Note that, using results of Theorem 2.4.2, it is then possible to establish the theoretical bounds
for the resultant largest and smallest eigenvalue. Note that Marčenko-Pastur results only hold in

10The code used for the simulation is given in appendix B.2.

24



3 Emperical Study of Spectral Analyis of Simulated Data

−5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and Limiting Spectral Distributions for data
generated from a normal distribution with n=500, T=500

x

D
is

tr
ib

ut
io

n

ESD
LSD

(a) Comparison between ESD and LSD.



0 100 200 300 400 500

0
1

2
3

4
5

Scatter plot of eigenvalues for data generated
from a normal distribution with n=500, T=500

Eigenvalue index

E
ig

en
va

lu
e

Theoretical maximum value

Theoretical minimum value

(b) Scatter plot of sample covaraiance matrix eigenval-
ues with theoretical bounds.

Figure 3.2.1: Empirical verification of Marčenko-Pastur theortical results for simulated data from
normal distribution with n = 500, T = 500, y = 1.
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Figure 3.2.2: Empirical verification of Marčenko-Pastur theortical results for simulated data from
Cauchy distribution with n = 500, T = 500, y = 1.

asymptotics, and hence some possible deviation may result in practice; that said, investigation in this
section will look at the sample sizes T and dimension sizes n varying in the range of 500 to 2000, which
can be considered as large. Moreover, as already mentioned, the Cauchy distribution, due to lack of
moments, does not verify the conditions for the theoretical results to hold, and, in general, it is not
expected that the observed empirical values will match the theoretical ones in this case. The following
investigation aims to verify firstly what values of T, n can be considered as “large”, and secondly to
compare the results when applied to the Cauchy distribution.

The calculation of sample covariance matrix, empirical and limiting spectral distributions, as well
as limiting bounds on the eigenvalues follow from the definitions and techniques established in section 2.
The written R code is given in appendix B.3.
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Figure 3.2.3: Empirical verification of Marčenko-Pastur theortical results for simulated data from
normal distribution with n = 1500, T = 2000, y = 0.75.
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Figure 3.2.4: Empirical verification of Marčenko-Pastur theortical results for simulated data from
Cauchy distribution with n = 1500, T = 2000, y = 0.75.

Note that, it is also possible to work with the correlation matrix, achieving the same results in the
case of the normal distribution, and rescaled results for the Cauchy distribution (noting that, despite
rescaling, the conclusion drawn are the same). This is due to the fact that the (standard) Marčenko-
Pastur result considers data with unit variance, and hence computing the correlation matrix instead
of sample covariance serves as a way of normalising each time series by its standard deviation.

The corresponding resultant plots of the simulation investigation are given in figures 3.2.1 - 3.2.5.
Note that other dimensions for T and n have been considered, however, in general the resultant plots
were very similar, and hence, for ease of readability, only few graphs that help to illustrate the main
points of the conclusion of this investigation are presented.

Firstly, for the normal distribution with data set size n = 500 and T = 500, and so y := n/T = 1,
the empirical limiting distribution and the theoretical spectral limiting distribution closely coincide,
which suggests that it is possible to attain a relatively quick convergence of the limiting spectral
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Figure 3.2.5: Empirical verification of Marčenko-Pastur theortical results for simulated data from
normal and Cauchy distributions with n = 2000, T = 1000, y = 2.

distribution, making the theory applicable even to relatively small data set sizes (< 500). This is
perhaps not surprising, as Karoui claims that the algorithm, which bases on Marčenko-Pastur theory
(see 4), is already attaining good results with data sizes of 30 or more [14, p. 2770]. Moreover, the
theoretical maximum value of the sample covariance matrix eigenvalues is very slightly below the
theoretical maximum, while the theoretical minimum is approximately attained.

Similar analysis, in the case of the normal distribution, follows from figure 3.2.3, where a larger
data set with n = 1500 and T = 2000, and so y := n/T = 0.75 is used. The eigenvalues form a
very clear pattern, and their distribution closely follows he Marčenko-Pastur law, with the eigenvalues
attaining (in approximation), but not exceeding, the theoretical bounds.

On the other hand, for the Cauchy distribution, some of the eigenvalues (in general, roughly 10%)
do not lie within the theoretical bounds, with values both above and below, as can be observed on
figures 3.2.2b and 3.2.4b. However, there is no clear connection between the exact proportions below
and above the theoretical limits and the dataset size; depending on different simulated values a slightly
different pattern is observed. Similarly, in the case of the empirical spectral distribution, observed
in figures 3.2.2a and 3.2.4a, although it deviates from the Marčenko-Pastur law, there is no evident
pattern linking this behaviour and the dimensions size. That said, for larger sizes, in general larger
disparity between the empirical spectral distribution and the Marčenko-Pastur law can be spotted.

Finally, in the case when y > 1, Theorem 2.4.2 is no longer applicable, and hence the investigation
on the bounds of eigenvalues is omitted. Based on figure 3.2.5 it can be seen that a similar to the
stated above conclusion can be drawn – there is some deviation from the Marčenko-Pastur law in
the case of the Cauchy distribution, whereas the normal distribution follows it precisely. During this
investigation, for different values of n and T within the rage [500, 2000] such that y > 1, the produced
plots gave similar results, where it was also observed that in general the smaller data size the less
accurate the empirical spectral distribution in regards to the Marčenko-Pastur law, which seems to be
intuitive, due to the asymptotic nature of the theory.

As a final remark, it should be noted that the number of variables n has a larger effect on the
deviation of the empirical spectral distributions away from the theoretical one than the sample size
T , where it has been possible, in the case of the normal distribution, to obtain very close fit to he
Marčenko-Pastur law for the dataset of size n = 2000, T = 500, while it was much harder in the case
when n = 500, T = 2000.
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4 Retrieving Information on Limiting Behaviour of Population Spec-
tral Distribution

Results in section 2 have established a fact that provided the limit of the population spectral dis-
tribution, H, it is possible to obtain the limiting spectral distribution, F . However, in the practical
application of data analysis, no information is given about the population spectral distribution. The
actual goal of such analysis is to retrieve the information about the population spectral distribution,
based on the fact that the empirical spectral distribution is readily computed [14, p. 2763].

Therefore, the key issue is to estimate the population eigenvalues, λ1, . . . , λn, using the obtained
eigenvalues of a sample covariance matrix, l1, . . . , ln, through the relationship described by the equa-
tion (2.5.1). The difficulty, however, lies within the fact that the discussed relationship between F and
H is entangled, and thus requires a careful consideration when seeking to extract a useful information
[14, p. 2765].

Karoui has proposed a method that “inverts” the relation between F and H, in order to provide
an algorithm that allows to calculate an estimate of the population spectral distribution, ĤΣ [14, p.
2763]. The provided strategy bases on three key points [14, p. 2765]:

1. Firstly, measure H has to be estimated from the Marčenko-Pastur equation, given in equation
(2.5.1).

2. Provided that an estimator, Ĥ, of the measure H is found, the next step is to estimate λi as the
ith quantile of the estimated distribution.

3. Finally, it has to be noted that since fixed distribution asymptotics are under consideration, the
estimate of H also serves as the estimate of HS , so in other words ĤS = Ĥ.

It follows then that the main issue is step 1, in which estimation of H is required, based only on
the availability of FS . As pointed out by Karoui [14, p. 2766], since the eigenvalues of S can be
computed, it is also possible to evaluate vFS (z) for any choice of the variable z. Thus, the proposed
approach is to evaluate the set of values of vFS at the grid formed by points {zj}JTj=1, for which (2.5.1)

holds (approximately) [14, p. 2766]. Karoui argues that the most suitable estimate of Ĥ in this setup
is then a value for which (2.5.1) is satisfied by {vFS (zj)}JTj=1 in the largest degree, so hence proposing

Ĥ = arg min
H̃

L

{ 1

vFS (zj)
+ zj −

n

T

∫
λ dH̃(λ)

1 + λvFS (zj)

}JT
j=1

 ,

where the optimisation is conducted over probability measures H̃, and L is a loss function of choice
(see section 4.1). This indeed gives a method for inversion of (2.5.1), in which using FS as an estimate
of F allows to obtain an estimate H.

4.1 Algorithm Finding the Estimate of Population Spectral Distribution

In this section, a practical discussion on implementation of the algorithm proposed by Karoui [14],
referred to in section 4, is given. Note that the work given in this section is closely following the study
done by Karoui [14].
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Firstly, note that the measure dH can be approximated by weighted sum of K ∈ N point masses:

dH(x) ≈
K∑
k=1

wkδtk(x),

where δtk is a point mass of 1 at tk, {tk}Kk=1 is a selected grid of points, and {wk}Kk=1 are weights such
that

K∑
k=1

wk = 1 and wk ≤ 0.

Using this approach, the integral in (2.5.1) can be then approximated simply as∫
λ dH(λ)

1 + λv
≈

K∑
k=1

wk
tk

1 + tkv
,

which turns the problem of finding the measure H into an optimisation problem in which set of weights
{wk}Kk=1 is selected for which

− 1

vFS (zj)
≈ zj −

n

T

K∑
k=1

wk
tk

1 + tkvFS (zj)
, (4.1.1)

holds approximately for all j = 1, . . . , JT , by noting the assumption made that vFS (zj) ≈ v∞(zj).
Rewriting the problem in terms of (4.1.1) enables for large simplification, where the only unknown

quantities are the weights {wk}Kk=1. As shown by Karoui [14], this presents a relatively simple convex
optimisation problem; this is argued as follows.

For j = 1, . . . , JT , call the approximation errors made, that are in general complex numbers, to be

ej =
1

vFS (zj)
+ zj −

n

T

K∑
k=1

wk
tk

1 + tkvFS (zj)
,

where ej occur due to both discretisation of the measure and the use of vFS (zj) instead of v∞(zj).
Then the inversion of the Marčenko-Pastur equation can be turned into optimisation problem based
on ej ’s provided that a suitable loss function L is chosen, which brings many advantages such as the
guarantee of fast algorithms (for example, see MOSEK optimisation package for Matlab, [17]). Karoui
has listed three main choices, whereas the consistency of the algorithm is only proven by Karoui for
the first one:

1. L∞ version: search for weights {wk}Kk=1 in order to minimise

max
j=1,...,JT

max{|< ej |, |= ej |}.

2. L2 version: search for weights {wk}Kk=1 in order to minimise
∑JT

j=1 |ej |.

3. L2-squared version: search for weights {wk}Kk=1 in order to minimise
∑JT

j=1 |ej |2.

In this project, details about the resultant linear programming problem will be omitted. For
further information in regards to the algorithm see the original work by Karoui [14], including the
discussion on how to select the grid points {tk}Kk=1. Finally, as already mentioned, Karoui has used
Theorem 2.5.2 to prove the consistency of the algorithm using the L∞ choice for the loss function (see
[14, p. 2785-2786] for the proof and further details).
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5 Correlation of Financial Stocks

For the particular problem considered in this project, let r(t) denote a column vector containing in its
ith column the log-returns of a particular stock ri(t), for i = 1, 2, . . . , n, at time t = 1, 2, . . . , T . Then,

S =
1

T − 1

T∑
t=1

(r(t)− r̄) (r(t)− r̄)ᵀ ,

where r̄ = 1
T

∑T
t=1 r(t), is the sample covariance matrix for the particular dataset containing log-

returns of a stock market index, exactly as defined previously.
In this project, data from the Standard & Poor 500 (S&P 500) index will be considered. This

index, designed as a leading indicator of U.S. equities, aims to reflect the risk and return characteristics
of the large capitalisation market [11]. Created in 1957, it contains 500 stocks that are regarded to be
widely held, where over 70% of all U.S. equity is being tracked by it [12].

It has been possible to identify n = 336 stocks for which daily adjusted price, from which log-returns
are obtained, is available over the horizon of T = 2517 days ≈ 10 years. The log-returns at date t

are given by the formula ri(t) = log
(
Si(t+1)
Si(t)

)
, where Si(t) denotes the current price of the stock i at

time t. Call the n× T matrix with this data as X. Part of the matrix X is being displayed below, as
a figure 5.0.1.

A AA AAPL ABT ACE ACN

[1,] -0.023770219 -0.04115807 -0.001140034 -0.063723478 -0.003188342 -0.050430854

[2,] -0.010362787 0.05185336 0.047159286 -0.011236073 0.019874186 0.017746111

[3,] 0.001156738 -0.01069529 -0.003997825 0.011856613 0.009347943 -0.005880448

[4,] -0.008125407 -0.01626052 -0.006943203 0.006184312 -0.008900815 -0.011202753

[5,] 0.025317808 0.02961185 0.002014837 0.033346527 0.011555684 0.031313713

Figure 5.0.1: Partial print-out of the data matrix X.

In addition to the sample covariance matrix, S, of X, it is possible to calculate the correlation
matrix C = (Cij) for i, j = 1, . . . , n with entries in [−1, 1], through the formula

Cij =
Cov(Si, Sj)

σSiσSj
,

where Cov(Si, Sj) is the covariance between stock Si and Sj available in the ijth entry of S, while
σSi and σSi is the standard deviation of stock Si and Sj , respectively, calculated as the square root of
the variance of the stock. This results in a n × n symmetric square matrix with entries in the range
[−1, 1] and 1’s on the diagonal. Part of the matrix C is being displayed below, as a figure 5.0.2.

Similarly to the work done in section 3, it is possible to compute the eigenvalues and corresponding
eigenvectors (the principal components), and compare them to the theoretical results in order to
identify the significant factors. However, firstly a word on the stylised statistical properties of asset
returns has to be mentioned, in order to justify the use of theoretical assumption of finite relevant
moments of the log-returns.
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A AA AAPL ABT ACE ACN

A 1.0000000 0.3494677 0.4853224 0.4965646 0.4132226 0.3320724

AA 0.3494677 1.0000000 0.4336627 0.4099646 0.4402923 0.3651333

AAPL 0.4853224 0.4336627 1.0000000 0.5416422 0.5456800 0.4068648

ABT 0.4965646 0.4099646 0.5416422 1.0000000 0.5028373 0.3705115

ACE 0.4132226 0.4402923 0.5456800 0.5028373 1.0000000 0.4219563

ACN 0.3320724 0.3651333 0.4068648 0.3705115 0.4219563 1.0000000

Figure 5.0.2: Partial print-out of the correlation matrix C.

5.1 Stylised Statistical Properties of Asset Returns

The established theoretical results in section 2 base on distributions with at least the first two moments
being finite. Moreover, the practical application of these results (see section 4) calls of the finite fourth
moment. Since the distribution of financial data cannot be specified exactly, one needs to be careful
when applying, say, Theorem 2.3.1 and Theorem 2.4.2, or solving the linear programming problem
in order to attain an estimate of the population spectral distribution (see section 4). Based on the
empirical evidence, as discussed in section 3, it can be seen that in an approximation the main results
are also very vaguely applicable for distributions that do not have any finite moments, such as the
Cauchy distribution. Of course, the asymptotic convergence in that case is not guaranteed, and the
obtained results should be treated with extreme caution.

In the literature there have been many empirical studies done, from which it has been observed
that financial time series exhibit common statistical properties, known as stylised empirical facts [5,
p. 224]. As given in many sources (see for example [5], [9]), in general, the assumption of the finite
fourth moment of the log-returns of S&P 500 index is justified by empirical study. In this project,
however, this assumption will not be further put under the study and will be considered to be a fact.

With that (reasonable) assumption made, it is now possible to move to the actual principal com-
ponent analysis of the S&P 500 data set.

5.2 Principal Component Analysis of the S&P 500 Index

Based on the calculations and application of discussed in this project random matrix theory, it is
possible to draw conclusions in regards to the principal component analysis of the S&P 500 index.
The R code written for the investigation in this section is available in appendix B.4.

Firstly turning to the histogram of the eigenvalues, shown in figure 5.2.1a, an already clear patter
is visible. There is one large eigenvalue of size 132, several eigenvalues that are larger than 1, while
the significant proportion (roughly 90%) has values below 1, but all are positive. Moreover, since it is
expected that there is inherit correlation between the stocks, the distributional condition of Marčenko-
Pastur law does not hold, and so there is divergence of the observed empirical spectral distribution
from the Marčenko-Pastur law, as observed in figure 5.2.1b.

A further analysis, using the theoretical bounds established through Theorem 2.4.2, shows that
in fact it is possible to distinguish 12 significant eigenvalues that have values beyond the theoretical
maximum, and hence can be regarded as non-random and containing information about the correlation
structure. It has to be noted that, although there are also eigenvalues beyond the theoretical minimum,
their deviation is not significant in size and hence will be ignored. See figure 5.2.2a for the graphical
representation of the attained eigenvalues. Having determined the 12 principal components it is now
possible to reach conclusions regarding the index and its underlying stocks.
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Figure 5.2.1: Graphical analysis of the S&P spectral distribution.
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Figure 5.2.2: Graphical analysis of the S&P 500 index.

Refer by the kth largest eigenvector to the eigenvector corresponding to the kth largest eigenvalue.
If a significant component (eigenvectors corresponding to a large, non-random eigenvalue) has only
a subset of elements different from zero, it can be seen to represent a specific market scenario [7, p.
536]. In the first largest eigenvector, all components carry the same sign. This can be interpreted
that there exists a general trend in which stock prices in the index rise and fall together. Moreover,
it can be concluded that the largest eigenvalue identifies the entire market [7, p. 536]. Moreover, the
magnitude of each component, in general, is similar with most values ranging between [−0.04,−0.07],
to which there are some outliers with a smaller magnitude, such as the Kroger Co. (KR) stock, with
the component value of only -0.00056. This information can be represented graphically, as done in
figure 5.2.3.

Similar analysis of the significant components has been conducted extensively in literature (see for
example [15]). It is possible to identify specific, for example, eigenvectors relating to the sectors of the
index, or having a specific relation to the geographical location of the stocks. Hence, a detailed study
of the first 12 largest eigenvalues, and their elements relating to each particular stock, can allow for
a detailed overview of the index behaviour and provide important implications relating to different
factors of the stocks, such as the geography, particular industry, market capitalisation, etc. Moreover,
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Figure 5.2.3: Graphical analysis of the eigenvector corresponding to the largest eigenvalue.

it is possible to take different time periods (altering possibly the size of T ), and compare the effects
of economical events (such as economical crisis) on the particular groups of industries related by the
significant eigenvectors (for example, see [18]). However, the main focus of this project is placed on
the mathematical aspect and the random matrix theory, and therefore this study will not be further
conducted here.

Finally, it should be noted that the eigenvectors for which eigenvalues are regarded as random (i.e.
eigenvalues that lie within the theoretical Marčenko-Pastur bounds) contain, in general, components
that are normally distributed with mean 0. This has been verified through empirical study in this
section, as can be seen on an example of the 130th largest eigenvector, whose elements are represented
as a histogram in figure 5.2.2b. Note that other non-significant eigenvectors presented very similar
pattern.

5.3 Repeating the Analysis of the S&P 500 Index on Different Time Interval

It can be argued that the considered time scope for the S&P 500 data of 10 years seemed unrealistically
long. Moreover, the large value of T meant that not all stocks could have been used, resulting the the
value of n significantly below 500. In this section the investigation is repeated in analogical way (with
obvious changes done to the computer code), with the only difference of using n = 487 stocks over the
horizon of T = 1037 days ≈ 5 years. Note that shorter time horizon enabled to load data for larger
number of stocks.

Despite the changes, similar results are observed. These are summarised in graphical form in
figure 5.3.1. That said, there have been only 10 principal components found, which lie beyond the
theoretical maximum value given by Theorem 2.4.2. The discussion on specific largest eigenvectors
will be omitted in this case, as very similar conclusion to the one in section 5.2 follows.

As previously, there have been some eigenvalues also below the theoretical minimum observed, but
their deviation is not statistically significant and hence they will not be considered as non-random
informative components.
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Figure 5.3.1: Graphical summary of results found for the S&P 500 index over 5 years time horizon.

6 Conclusion

Results from random matrix theory give a powerful tool in dealing with the large T , large n asymptotic.
In this project, main theory regarding the spectral distribution of large-dimensional random matrices,
with focus on the sample covariance matrix, has been given. As the consistency of the large dimensional
limit theorems has been proven, it is not surprising that their empirical verification through simulations
has given desired results. Based on the study, it has been shown that the asymptotic properties of
the Marčenko-Pastur result have been attained even for relatively small dimension sizes. That said,
the observed through simulation convergence to the Wigner’s semicircular law has been relatively
poor, suggesting that very large data sets indeed need to be considered in order to attain reasonable
asymptotic results.

Under the assumption of finite fourth moment of the the S&P 500 index, a practical investigation
on the asset returns has been made, which concerned the estimation of the covariance and factor
identification for financial data. For the data set looking at 10 years time horizon, it has been possible to
identify 12 principal components, where each corresponding eigenvector has presented some structural
pattern. In the shorter, more realistic time period of 5 years, only 10 principal components (out of 487
components) have been selected. In this project a short example of the first largest principal component
has been given, omitting the exact pattern identification and its relation to the market scenario. A
further extension to this project could include precise study of each 12 principal components, drawing
conclusions relating the behaviour of the stocks in regards to factors such as sectors, geographical
implications, or effects of different significant economical events.

Finally, in section 4, an algorithm has been proposed allowing to retrieve information for a large
dimensional dataset regarding the population covariance matrix, dealing with the problem of inherent
noise and variability of the time-series. Application of this algorithm to, for example, financial data
set, could bring insight on the actual correlation between stocks or markets. It hence is possible to
further extend the investigation in this project by implementing the algorithm to a real dataset (such
as the S&P 500 index) in order to retrieve valuable information.
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Appendices

A Supplementary Theorems

A.1 Perturbation Inequality Theorem

Theorem A.1.1 (Bai & Silverstein, Perturbation Inequality Theorem [1, p. 502]) Let A and B be
two p× n matrices and the empirical spectral distributions of S = AAᵀ and S̄ = BBᵀ be denoted by
FS and F S̄, respectively. Then,

L4
(
FS , F S̄

)
≤ 2

p2
(trace(AAᵀ +BBᵀ)) (trace[(A−B)(A−B)ᵀ]).

Proof of Theorem A.1.1 is given in Bai & Silverstein, pages 502-503 (see [1, p. 502-503]).

A.2 Rank Inequality Theorem

Theorem A.2.1 (Bai & Silverstein, Rank Inequality Theorem [1, p. 503]) Let A and B be two p×n
complex matrices. Then, ∣∣∣∣FAAᵀ − FBBᵀ∣∣∣∣ ≤ 1

p
rank(A−B).

More generally, if F and D are Hermitian matrices of orders p × p and n × n, respectively, then it
follows that ∣∣∣∣FF+ADAᵀ − FF+BDBᵀ∣∣∣∣ ≤ 1

p
rank(A−B).

Proof of Theorem A.2.1 is given in Bai & Silverstein, pages 504-505 (see [1, p. 504-505]).

A.3 Difference of Traces of a Matrix and Its Major Submatrices Theorem

In order to present theorem regarding difference of traces of a matrix and its major submatrices, firstly
consider, for completeness, the following definition, given below.

Definition A.3.1 (Major Submatrix [4, p. 40]) For an arbitrary matrix A of order p× q and of rank
p, a major submatrix of A is a nonsingular submatrix of order p.

Moreover, consider a second definition, given below.

Definition A.3.2 (kth Major Submatrix [1, p. 470]) For a n×n matrix A, matrix Ak, called a major
submatrix of order (n− 1), is the matrix resulting from removing the kth row and column from A.

Hence, now the major theorem can be stated.

Theorem A.3.1 (Bai & Silverstein, Difference of Traces of a Matrix and Its Major Submatrices
Theorem [1, p. 472]) If the n × n matrix A and Ak, the kth major submatrix of A of order (n − 1),
are both nonsingular and symmetric, then

trace(A−1)− trace(A−1
k ) =

1 +α′kA
−2
k αk

αkk −α′kA
−1
k αk

,

where αk is the vector obtained from the kth row of A with the kth element removed. Clearly, if A is
Hermitian, then α′k can be replaced by αᵀ

k.

Proof of Theorem A.3.1 is given in Bai & Silverstein, pages 471-472 (see [1, p. 471-472]).
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A.4 Trace of an Inverse Matrix Theorem

Following the definitions and notation established in appendix A.3, the following result holds, stated
below.

Theorem A.4.1 (Trace of an Inverse Matrix [1, p. 470]) If both A and Ak, k = 1, 2, . . . , n, are
nonsingular, and if A−1 is written as A−1 =

[
akl
]
, then

akk =
1

akk −α′kA
−1
k βk

,

and hence

trace(A−1) =
n∑
k=1

1

akk −α′kA
−1
k βk

,

where akk is the kth diagonal entry of A, Ak and αk as defined previously, and βk is the vector from
the kth column of A with the kth element removed.

Proof of Theorem A.4.1 is given in Bai & Silverstein, page 470 (see [1, p. 470]).

A.5 Extended Burkholder Inequality

Theorem A.5.1 (Extended Burkholder Inequality [1, p. 32]) Let {Xk} be a complex martingale
difference sequence with respect to the increasing σ-field {Fk}. Then, for p > 1,

E
∣∣∣∑Xk

∣∣∣p ≤ Kp E
(∑

|Xk|2
)p/2

,

where Kp is a known constant [21, p. 78].

Proof of Theorem A.5.1 is given in Bai & Silverstein, pages 33-34 (see [1, p. 33-34]).

A.6 Moment Convergence Theorem

Let {Fn} be a sequence of distribution functions, such that moments of all orders are finite. Denote
the kth moment of a distribution Fn by

βn,k = βk(Fn) :=

∫
xk dFn(x),

then following Moment Convergence Theorem holds, given below [1, p. 507].

Lemma A.6.1 (Moment Convergence Theorem, Unique Limit [1, p. 507]) A sequence of distribution
functions {Fn} converges weakly to a limit if the following conditions are satisfied:

1. Each Fn has finite moments of all orders.

2. For each fixed integer k ≥ 0, βn,k converges to a finite limit βk as n→∞.

3. If two right-continuous nondecreasing function F and G have the same moment sequence {βk},
then F = G+ const.

Proof of Lemma A.6.1 requires some intermediate lemmas, and is given in Bai & Silverstein, pages
507-514 (see [1, p. 507-514]).
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B Written computer code

B.1 Wigner’s Semicircular Law with “Direct” Wigner Matrix Simulation

library("MASS")

# Set size of the matrix

n <- 500

# Generate matrix with iid N(0,1) entries

H <- matrix(rnorm(n^2,0,1),n,n)

# Produce standard Wigner matrix

H <- (H+t(H))/2/sqrt(n)*sqrt(2)

# Calculate eigenvalues

H.eigen <- eigen(H)

H.evals <- H.eigen$values

# Produce plot

hist(H.evals,breaks=100,prob=T,

xlab="Ordered Eigenvalues",

main="Convergence of eigenvalues of Wigner matrix to semicircular law"

)

B.2 Wigner’s Semicircular Law and Sample Covariance Matrix

library("MASS")

# Generate data

n <- 500

t <- 5000

mu <- seq(0,0,length.out=n)

S <- diag(n)

X <- mvrnorm(t,mu,S)

X <- t(X)

# Calculate covariance matrix

S.hat <- (X%*%t(X))/t

# Subtract I, scale

H <- (S.hat-diag(n))*sqrt(t/n)

# Calculate eigenvalues

H.eigen <- eigen(H)

H.evals <- H.eigen$values

# Produce plot

hist(H.evals,breaks=50,prob=T,

xlab="Ordered Eigenvalues",

main="Histogram of eigenvalues of a sample covariance matrix",

xaxt=’n’

)

axis(side=1, at=c(seq(-1.8,1.8,0.6),0), labels=c(seq(-1.8,1.8,0.6),0))
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B.3 Empirical Verification of Marčenko-Pastur Results

#install.packages("RMTstat")

library("MASS")

library("RMTstat")

## Function simulating data from specified distribution based on given parameters

# Required function arguments:

# (i) distr: sampling distribution; allowed values - "norm", "cauchy"

# (ii) n: number of degrees of freedom (sample size)

# (iii) T: numer of dimensions (variables)

# (iv) para: parameters of sampling distributions in a list

MPsim <- function(distr,n,t,para){

## Generate data

if(distr=="norm"){

case <- "normal"

mu <- para[[1]]

S <- para[[2]]

X <- mvrnorm(t,mu,S)

}

else if(distr=="cauchy"){

case <- "Cauchy"

mu <- para[[1]]

scale <- para[[2]]

X <- matrix(rcauchy(n*t,mu,scale),t,n)

}

else (return(0))

## Find means

mu.hat <- apply(X,2,function(x){mean(x,na.rm=TRUE)})

## Find covariance

X.no.mu <- apply(X,1,function(x){x-mu.hat})

S.hat <- X.no.mu%*%t(X.no.mu)/(t-1)

## Find correlation matrix

rho.hat <- matrix(NA,n,n)

for(i in 1:n){

j <- 0

while(j<i){

j <- j+1

rho.hat[i,j] <- S.hat[i,j]/sqrt(S.hat[i,i]*S.hat[j,j])

rho.hat[j,i] <- rho.hat[i,j]

}

}
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## Find eigenvalues

evals <- eigen(rho.hat)$values

## ESD vs LSD

# ESD

ESD <- function(x){

return(sum(evals <= x)/n)

}

resolution <- 1e4

points <- seq(-5,10,length.out=resolution)

ESDpoints <- sapply(points,ESD)

#LSD

MPlaw <- pmp(points,t,n)

MPlaw[MPlaw>1] <- 1

# Plots

title <- paste("Empirical and Limiting Spectral Distributions for data\n",

"generated from a ",case," distribution with n=",n,", T=",

t,sep="")

plot(points,ESDpoints,main=title,xlab="x",ylab="Distribution",’l’)

lines(points,ESDpoints)

lines(points,MPlaw,col="red")

legend(’topleft’,c(’ESD’,’LSD’),lty=c(1,1),col=c("black","red"))

## Add max and min evals

if(n/t<=1){

title <- paste("Scatter plot of eigenvalues for data generated\n","from a ",

case," distribution with n=",n,", T=",t,sep="")

plot(1:length(evals),evals,ylim=c(0,max(evals,(1+sqrt(n/t))^2)+1),

main=title,xlab="Eigenvalue index",ylab="Eigenvalue",pch="*")

abline(h=(1-sqrt(n/t))^2,col="blue")

text(0,(1+sqrt(n/t))^2+0.1,"Theoretical maximum value",pos=4,col="blue")

abline(h=(1+sqrt(n/t))^2,col="blue")

text(0,(1-sqrt(n/t))^2+0.1,"Theoretical minimum value",pos=4,col="blue")

}

else {

print(n/t)

}

}

## Generate simulations

n <- seq(500,2000,500)

t <- seq(500,2000,500)

nt <- expand.grid(n,t)

# Save plots

save.path <- ’~/Documents/Imperial College London/M3R/R/imgs/sim.pdf’
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pdf(file=save.path,width=10,height=6.5)

for(i in 1:dim(nt)[1]){

sizes <- nt[i,]

n.c <- as.numeric(sizes[1])

t.c <- as.numeric(sizes[2])

print(n.c)

print(t.c)

MPsim("norm",n.c,t.c,list(numeric(n.c),diag(n.c)))

MPsim("cauchy",n.c,t.c,c(0,1))

}

# Clean-up

dev.off()

B.4 Study of Financial Stocks

require(quantmod)

library("RMTstat")

# Save plots

save.path <- ’~/Documents/Imperial College London/M3R/R/imgs/sp500.pdf’

pdf(file=save.path,width=10,height=6.5)

#### Load data ####

## Load stocks

# Get S&P500 symbol list

#snp500.tickers <- read.table("~/R/data/sp500-symbol-list.txt",quote="\"")

#tickers <- as.matrix(snp500.tickers)

# Load data into new environment

#data <- new.env()

#getSymbols(tickers,src=’yahoo’,from=’2003-01-01’,to=’2013-01-01’,

# env=data,auto.assign=T)

## Load the dataset instead of fetching information each time

load("~/Documents/Imperial College London/M3R/R/data/sp500downloaded.RData")

## Load stocks’ adjusted price to a matrix

stocks.adjusted <- as.matrix(do.call(cbind,eapply(data,Ad)))

colnames(stocks.adjusted) <- tickers[1:dim(stocks.adjusted)[2]]

#### Principal Component Analysis ####

## Calculate log-returns, r

r <- apply(stocks.adjusted,2,ROC)

# Remove NA, set it to 0

r[!is.finite(r)] <- 0
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## Calculate means vector for r, mu.hat

mu.hat <- apply(r,2,function(x){mean(x,na.rm=TRUE)})

## Calculate covariance matrix for r, C.hat

t <- dim(r)[1]

n <- dim(r)[2]

y <- n/t

r.no.mu <- apply(r,1,function(x){x-mu.hat})

S.hat <- r.no.mu%*%t(r.no.mu)/(t-1)

## Find correlation matrix

rho.hat <- matrix(NA,n,n)

for(i in 1:n){

j <- 0

while(j<i){

j <- j+1

rho.hat[i,j] <- S.hat[i,j]/sqrt(S.hat[i,i]*S.hat[j,j])

rho.hat[j,i] <- rho.hat[i,j]

}

}

## Find evals and evecs of rho.hat

rho.hat.eigen <- eigen(rho.hat)

evals <- rho.hat.eigen$values

evecs <- rho.hat.eigen$vectors

# ESD

ESD <- function(x){

return(sum(evals <= x)/n)

}

resolution <- 1e4

points <- seq(-5,10,length.out=resolution)

ESDpoints <- sapply(points,ESD)

# LSD (M-P)

MPlaw <- pmp(points,t,n)

MPlaw[MPlaw>1] <- 1

## Plots

# Eigenvalues histogram

hist(rho.hat.eigen$values,breaks=100,prob=F,

xlab="Ordered Eigenvalues",main="Histogram of eigenvalues")

# ESD vs M-P

title <- paste("Empirical Spectral Distributions against M-P Law",

" for S&P500 with n=",n,", T=",t,sep="")

plot(points,ESDpoints,main=title,xlab="x",ylab="Distribution",pch=".")
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lines(points,ESDpoints)

lines(points,MPlaw,col="red")

title <- paste("Scatter plot of S&P 500 correlation\n",

"matrix eigenvalues with n=",n,", T=",t,sep="")

plot(1:length(evals),evals,main=title,pch="*")

abline(h=(1-sqrt(n/t))^2,col="blue")

text(200,(1+sqrt(n/t))^2+3,"Theoretical maximum value",pos=4,col="blue")

abline(h=(1+sqrt(n/t))^2,col="blue")

text(0,(1-sqrt(n/t))^2-3,"Theoretical minimum value",pos=4,col="blue")

## Study significant factors

k <- sum(evals>(1+sqrt(n/t))^2)

for(i in 1:(k)){

if(i>3){q <- "th"}

else if(i==1){q <- "st"}

else if(i==2){q <- "nd"}

else {q <- "rd"}

title <- paste("Graphical representation of ",i,"-",q," largest eigenvector",

sep="")

plot(evecs[,i],xlab="Eigenvector component",ylab="Value of the component",

main=title)

}

title <- paste("Histogram of 1-st largest eigenvector",sep="")

hist(evecs[,1],prob=T,breaks=100,xlab="Eigenvector component size",main=title)

## Not significant factors

title <- paste("Histogram of 130-th largest eigenvector",sep="")

hist(evecs[,130],prob=T,breaks=100,xlab="Eigenvector component size",main=title)

# Clean-up

dev.off()
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